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ABSTRACT : Novel analytical solutions of the Winkler type are derived for the response 
to lateral dynamic loads of a flexible elastic pile embedded in inhomogeneous soil, 
based on three soil constants instead of one in the classical formulation. This extension 
allows for a more rational calibration of the model against rigorous solutions such as 
finite elements or boundary elements, by matching all three stiffness constants (for 
swaying, rocking and cross-swaying rocking) at the pile head. This approach leads to a 
more realistic representation of pile-soil interaction and a better estimation of the internal 
forces along the pile – notably peak pile bending moments. Both inertial and kinematic 
interaction are examined, due to harmonic head loads and vertically propagating shear 
waves. Closed form solutions are obtained for the: (1) stiffness coefficients, (2) kinematic 
response coefficients, (3) peak shear forces and bending moments. The method does 
not lead to a significant increase in the complexity of the analysis, as the order of the 
governing differential equation and the boundary conditions at the two ends of the pile 
are the same as in the classical problem. A novel geometric interpretation of the three 
elastic constants is provided. 
 
1. INTRODUCTION 
 
New analytical solutions based on the Winkler model of soil reaction are presented for 
flexible elastic piles embedded in inhomogeneous elastic soil. Contrary to the classical 
solutions which utilize a single soil constant (coefficient of subgrade reaction), the 
proposed method employs three soil constants which generate shear tractions, external 
moments and internal moments on the pile, proportional to displacement, rotation and 
curvature, respectively. The use of these independent constants facilitates the 
calibration of the model against rigorous numerical solutions based on continuoum 
representation of the soil, by matching all three stiffness coefficents (against swaying, 
rocking and cross-swaying rocking) at the pile head. In addition to providing a more 
rational representation of soil-pile interaction, the model leads to a better estimation of 
bending moments along the pile. Also, the model does not increase the complexity of the 
analysis, since the order of the differential equation and the boundary conditions do not 
change – contrary to corresnponding gradient theories of Continuum Mechanics. It is 
proven by dimensional arguments that the soil coefficients are dependent on soil-pile 
stiffness contrast, Poisson’s ratio and boundary conditions at pile head. Closed-form 
solutions for these three soil constants and comparisons with finite element solutions are 
presented. This method is a generalization of the models of Hetenyi (1946) and 
Pasternak (1954), which employ only two soil constants.  
  



The Winkler’s model (1867) – which was first developed for the idealization of the soil in 
soil-structure interaction problems – is based on the reasonable but approximate 
modeling of the soil as a system of similar, independent, linear springs which are 
represented by only one coefficient of sub-grade reaction, k. 
 According to the abovementioned theory, the static stiffness at the head of a 
flexible pile in homogeneous soil, is computed by the simple equations (Hetenyi, 1946):  
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where λ is the Winkler coefficient (dimensions 1/Length) and EpI the flexural stiffness of 
the pile (dimensions Force x Length2). The expressions in Equations 1a, b and c give the 
coefficients in swaying, rocking of the pile head and cross-swaying rocking, respectively. 

For a free-head pile, the lateral stiffness for a force applied on top under zero bending 
is given by  
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which is derived by combination of the above equations and predicts that the stiffness for 
a free-head pile is equal to 50% of the stiffness for a fixed-head pile (in contrast to 25% 
for a column). 

It is known that the idealization of springs with only one constant k, compared with the 
analysis of the soil as a continuum media, gives inconsistent results for soil-pile 
interaction. This is due to the Winkler’s model incapability to capture the cross-
correlation between the springs. So, Wieghardt (1922) followed by Filonenko-Borodich 
(1940), Hetenyi (1946), Pasternak (1954) and Vlasov-Leontiev (1966) proposed 
improvements to the original model with the introduction of a second coefficient (kφ), 
which can be interpreted either through a membrane which connects the base of Winkler 
springs (Hetenyi 1946) or through rocking springs distributed along the pile (Shanchez-
Salinero 1982). 

 
2. PROBLEM DEFINITION 
 
The problem to be analyzed is presented in Figure 1. Pile embedded in homogeneous 
soil, subjected to lateral load and moment at its head. The pile is simulated as a linear 
elastic, homogeneous, cylindrical, Euler-Bernoulli beam with constant diameter d, length 
L and elastic modulus Ep. Moreover, the pile is considered to be flexible, so that it will not 
deflect for its entire length, but only up to its «active» length, Lα (Randolph, 1981) 
beyond which it does not respond to the lateral force at its head, thus its real length does 
not affect its stiffness. The soil is assumed to be linear, viscoelastic with elastic modulus 
Es and Poisson’s ratio νs. The contact at the interface of pile-soil is considered to be 
perfect, without sliding or separation between these two materials.  

For static loading conditions, the main dimensional parameters of the problem are the 
length of the pile, L, its diameter, d, its elastic modulus, Εp, and the elastic modulus of 
the soil, Es. The fundamental dimensions are length [L] and force [F]. Consequently, the 
number of main dimensional parameters is Μ=4 and the equivalent number of 
fundamental dimensions is Ν=2. Applying Buckingham’s theorem (1914), Μ−Ν=2 
dimensionless parameters are needed for the description of our problem. These 



parameters are the ratio of the length of the pile over its diameter, L/d and the stiffness 
of the pile-soil, Ep/Es. Moreover, the dimensionless ratio of the Poisson ratio of the pile, 
νp, and the soil, νs are included in this solution. 
 

 
 

 
Figure 1. (a) Problem definition, (b) Infinitesimal pile segment of three-parameter Winkler 
model  
 
3. FORWARD ANALYSIS  
 
For the description of the behavior of the pile, the abovementioned Winkler’s model is 
proposed, which includes three coefficients of sub-grade reaction ko, kφ και kc (Figure 
1b). In the context of this theory, the equation of equilibrium of the pile is 
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where the superscript ( ) represents differentiation to the variable (z). The three soil 
constants create shear forces and moments in the pile segment, which are proportional 
to the range of curvature, rotation and deflection of the pile, respectively. The constants 
of Winkler springs ko, kφ και kc are related to the soil stiffness through the equations 
given below, which satisly the dimensions of each term in Equation 4.  
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where δo, δφ and δc are dimensionless Winkler constants, the values of which are 
examined below. It should be noted that Equation 4 can be derived based on the 
alternative hypothesis that soil reaction depends on the higher-order derivatives of 
deflection  
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an assumption which does not include distributed moments and a solution which does 
not include derivatives of odd order for obvious reasons. It should be highlighted that 
although the equilibrium equations are the same, the above assumption is not equivalent 
to the higher order Winkler model as shown in Figure 1b (Agapaki 2014). 

According to the three-parameter Winkler model, the stiffness of a pile of infinite 
length embedded in homogeneous soil is computed in the following equations  
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where 
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and λ, µ the Winkler parameters (with dimensions 1/Length) and EpI the flexural stiffness 
of the pile. These two Winkler parameters are obtained by the relations below 
(Shanchez-Salinero 1982, Αgapaki 2014): 
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For a free-head pile, the lateral stiffness of a pile subjected to a lateral force with no 

bending moment at its head is given by 
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Lastly, for λ=µ and (EpI)’=EpI, the above relations are similar to Equations 1 and 3.	
  
 
4. BACKWARD ANALYSIS 

 
Considering the stiffnesses of the pile ΚΗΗ, KHR and ΚRR, as known, it is possible to 
determine the constants δo, δφ και δc of the model following backward analysis. More 
specifically, the following flexural stiffness of the pile is derived from Equations 7- 9 
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which is valid for the typical Winkler model and allows the constant δc, through Equation 
10, to be based on stiffness coefficients at the pile head to be determined as 
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The use of absolute value for |KHR| in Equation 15 is used for clockwise and 
counterclockwise reference systems. Adding Equations 11 and 12 by parts and after 
combining Equations 7 and 9, the constant kο is given 
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Combining Equations 5a and 16, we get  
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Dividing the parts of Equations 11 and 12, the constant kφ is derived as 
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So, taking into account the Equations 7-10 and 14, the constant δφ is given from 
Equation 18 as a function of stiffness coefficients  
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Given that the stiffness coefficients are written in the more useful form 
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from Equations 15, 17, 19 and 20 we get the following simpler expressions 
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where χHH, χHR, χRR are dimensionless constants, which are available in literature. More 
specifically, substituting in the above expressions the available relations for χHH, χHR, χRR 
of Syngros (2004) which have been modified as following 
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and moment of inertia for a cylindrical intersection of the pile Ip = πd4/64, Equations 21-
24 are simplified as following 
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which are sufficient for the application of the method. The equivalent expression for the 
constant δo of the one-parameter Winkler model is given as δο=1.17, which is reasonably 
greater than the equivalent coefficient in Equation 25 and is in good agreement with the 
proposed models of Syngros (2004) και Gazetas (1991). 
 
 
 
5. MAXIMUM BENDING MOMENTS 
 
For a free-head pile, the maximum bending moment is at a depth of z=π/2λ and is 
derived by solving Equation 4 for boundary conditions Q(0)=P and M(0)=0.	
   It is proved 
that for the bending moment at the pile head we have (Agapaki, 2014)	
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The maximum bending moment for the three-parameter Winkler model is equal to  
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where the dimensionless coefficient with χΜ being equal to 0.12. For the one-parameter 
Winkler model, the equivalent coefficient is equal to 0.13 indicating that the one-
parameter model overestimates the bending moment at the pile head approximately 
about 10 % compared to the three-parameter one.  

Regarding a fixed-head pile, Equation 27 is used with χΜ = 0.28 and the maximum 
bending moment is developed at the top. With relevant calculations for the one-
parameter model, we get χΜ =0.32, which indicates that this model overestimates the 
bending moment at the pile head about approximately 20%. 
 
6. RESULTS 
 
The three Winkler constants are represented in Figure 2.  
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Figure 2. Winkler constants for a pile in homogeneous soil as function of Ep/Es 
 
We observe that the values of the dimensionless parameter δο in the three-parameter 
model are smaller than the one-parameter model, and do not change with the pile-soil 
stiffness, Εp/Es. However, the parameters δφ and δc significantly increase with Εp/Es.  
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Figure 3. Pile stiffness coefficients for homogeneous soil (νp = 0.25, νs = 0.4) 
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Figure 4. Maximum bending moments on a pile with different boundary conditions at the 
head under a horizontal load P, for different pile-soil stiffness contrasts (νs = 0.4) 
 

In Figure 3 (a-c) the stiffness coefficients are presented for a fixed-head pile 
(Equations 1 & 7-9) as a function of the stiffness ratio Εp/Es. It is observed that the 
relations for the stiffness coefficients of the three-parameter model are in very good 
agreement with the equivalent expressions in literature. Comparing with the one-
parameter model, the stiffness coefficients have a small deviation especially for the term 
ΚHR. As shown in Figure 3d, for free-head pile, we observe that the three-parametric 
model overestimates the swaying coefficient comparing to other solutions. Regarding the 
stiffness ratio, it is obvious that increasing the ratio Εp/Es leads to the increase of 
stiffness. 

In Figure 4, a comparison of maximum bending moments at the pile head and at 
depth z=π/2λ is presented, in comparison to those presented in literature (Randolph 
1981). There is good agreement of the solution of Randolph with the equivalent 
analytical solution of the three-parametric Winkler model for small soil-pile stiffness 
ratios (from 102-103) compared to the classic Winkler model. For greater values of this 
ratio, the numerical solution approaches the one of the one-parameter Winkler model.  
 
7. CONCLUSIONS 
 
The main conclusions of this paper are summarized below: 
• The proposed model contains three soil constants and consequently can 

simultaneously reproduce all of the three stiffness coefficients at the pile head, in 
contrast to the one-parameter model which is usually calibrated, so that it can 
reproduce only horizontal stiffness. 

• The proposed method improves the estimation of maximum bending moments for 
laterally loaded piles in comparison to the classic one-parameter model.  

• All the above are achieved with no significant increase in the complexity of the 
analysis, since the order of the differential equation and the boundary conditions at 
the pile head and tip do not change compared to the typical Winkler model.  
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