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EXECUTIVE SUMMARY

The main objective of this study has been to examine the predictive capabilities of various
pseudo-static analytic methods of analysis in capturing key response parameters for culvert
structures under seismic loads. These methods rely on several simplifying assumptions and
consequently bear errors. State-of-the-art versions of these simplified methods of seismic
analysis for buried/embedded structures were most recently articulated in the “NCHRP
611” report, and comparisons of their predictions to experimental data are made in the
present study. Experiments comprised centrifuge tests on two specimens—one relatively-
stiff rectangular and one relatively-flexible circular culvert—embedded in dense dry sand.
Dimensions and properties of these specimens were representative of two large culverts
selected from the “Caltrans Standard Plans.” Both specimens and the soil media were well-
instrumented, and were subjected to a series of harmonic, as well as low, moderate, and
high amplitude broadband (earthquake) base excitations. Comparisons revealed various
shortcomings of the NCHRP 611 methods. The most important issue was found to be the
sensitivity of model results to the estimated soil shear strain, which represents the seismic
demands on the culverts. Depending on the particular algorithmic branch of the NCHRP
611 methods adopted, some of the structural strains were over-predicted while others were
under-predicted. Such inaccuracies should not necessarily lead to catastrophic results for
culverts, but they nonetheless reduce the margins of safety and economy in their designs.
Overall a “refined” version of the NCHRP 611 method, which used maximum shear strains
obtained through a one-dimensional site response analysis, produced acceptable results for
the rigid (rectangular) culvert specimen. For the flexible (circular) culvert, the results
appeared fairly inaccurate.

Comparisons of experimental data were also made with predictions from a two-dimensional
(plane-strain) finite element (FE) model. Material properties of this model were calibrated
using data collected from accelerometer readings made by the centrifuge specimens’ free-
field arrays—i.e., part of the same data that were used for estimating the shear strain
demands on the specimen culverts using the NCHRP 611 methods. Predictions made using
this FE model were superior and exhibited acceptable errors.

Given the aforementioned findings, various detailed recommendations are made for future
work in the final chapter of this report. The test data are archived at DesignSafe.org, and a
Jupyter notebook is developed to serve as a front-end, providing easy access to data by other
researchers. Additionally, the nonlinear soil model used in the finite element simulations
is implemented as a user material subroutine (UMAT) for ABAQUS, and is also made
publicly available.
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Chapter 1

Introduction

1.1 Motivation and objectives

Seismic response of underground structures is a complex soil-structure interaction (SSI)
problem in which two fundamental mechanisms are at play. Differences in motion between
the free-field soil and the foundation system in the absence of excess or deficient mass
between the two that are due to their stiffness contrast are collectively referred as Kinematic
Interaction (KI) effects. Inertial Interaction (II) effects are, therefore, complementary,
and are concerned with the soil reactions that develop to resist inertial forces associated
with accelerations of the foundation-structure system relative to the soil. The kinematic
component is generally considered to be more significant for buried structures due to their
modest mass and their confinement by soil.

Limit equilibrium methods (e.g. Mononobe and Matsuo, 1929) are not appropriate for
the seismic design of buried structures because their formulation does not reflect the SSI
processes that are responsible for the formation of interface pressures. As such, a number
of researchers (e.g., Wang, 1993a) proposed pseudo-static deformation-based approaches
to take the effects of SSI into account for the seismic design of underground structures,
followed by Penzien (2000b) and Hashash et al. (2001). In the said approaches, analytical
elasticity-based formulations are provided to compute the seismic bending moments and
hoop forces in circular structures. Methods proposed for computing internal seismic forces
for rectangular structures, on the other hand, are based on static frame analysis.

More recently, Katona (2010) presented a finite element approach to obtain the seismic
responses of buried culverts and cut-and-cover tunnels, by specifying quasi-static displace-
ment profiles at the soil boundaries. These profiles taken as the products of free-field ground
strains and the height of the modeled soil domain. As a result, the frequency content of
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the ground motion—which, in turn, controls the wavelength—is indirectly represented in
these methods through their impact on the shear strain. It should be noted that pseudo-
static methods described in Wang (1993a) and Hashash et al. (2001) are very similar to the
implementation in Katona (2010), so these are conceptually similar methods.

Limitations of the aforementioned methods are manifold: (1) They do not directly account
for the broadband frequency content of seismic input excitations, as it is now well under-
stood that seismic earth pressures vary with excitation wavelength (Brandenberg et al.,
2015); (2) By conditioning the analyses on shear strain, their results are impacted by the
challenges and limitations of 1D ground response assumption (e.g. Stewart et al., 2014);
(3) The shear strain field is taken as uniform over the height of the buried structure, which
may not be a valid assumption depending on the frequency of the seismic excitation, size of
the underground structure, heterogeneity of the soil profile, and the mode of free-field wave.
Finally, (4) these methods do not consider the relative inertia that can develop between the
buried structure and the soil (that is, negative inertia that is caused by the culvert’s empty
space).

Current seismic design practices—articulated in, for example, the NCHRP Report 611
(Anderson et al., 2008)—are based on the procedures proposed by Wang (1993a) for circular
and rectangular buried structures. During the last few years, a number of experimental (e.g.
Cilingir and Madabhushi, 2011a,b; Lanzano et al., 2012, 2015; Tsinidis et al., 2015; Ulgen
et al., 2015; Abuhajar et al., 2015), numerical (e.g. Hashash et al., 2005; Kontoe et al., 2014;
Lanzano et al., 2015; Tsinidis et al., 2016; Tsinidis, 2017) and analytical (e.g. Bobet et al.,
2008; Park et al., 2009; Bobet, 2010) studies have been conducted to explore the accuracy
of the aforementioned simplified procedures. A non-exhaustive list of previously performed
experimental studies on buried structures in dry sand is provided in Table 1.1.

We have undertaken here a centrifuge modeling program that is designed to extend the
previous test results by (1) applying a wider range of ground motions spanning frequency
contents where interaction effects are expected to range from significant to negligible; (2)
applying a wider range of shaking amplitudes to investigate variable effects of soil non-
linearity; and (3) deploying a relatively dense instrument configuration to enable detailed
measurements of the culvert section responses as well as near- and far-field soils. The
centrifuge tests were performed using the 9m-radius centrifuge at the Center for Geotech-
nical Modeling (CGM) at UC Davis (Kutter et al., 1994). Specimens consisted of two
representative structures that were selected per Caltrans Standard Plans A62E and A62F
(Department of Transportation State of California, 2015), which were embedded in a gran-
ular backfill.

The main objectives of this research project were (1) to compare the experimental findings
with the design method described in NCHRP Report 611 (Anderson et al., 2008) in order to
establish the validity (or lack thereof) of this method for the specific Caltrans configurations
tested; (2) to formulate preliminary recommendations for Caltrans practice; and (3) to
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identify future research needs in this area, as needed.

Table 1.1: A list of previous experimental studies on buried structures in dry sand.

Authors Structure Input motion Soil relative density
Type Dimensions (m) Type PGA (g) Frequency (Hz)

Cilingir and Madabhushi (2011a,b) S 5 × 0.061 H 0.08 − 0.32 0.8 − 1.2 45%5 × 0.155
C 5 × 0.088 E 0.22 − 0.62 1 − 3

Lanzano et al. (2012, 2015) C 6 × 0.06 H 0.05 − 0.15 0.37 − 0.75 40%, 75%
Tsinidis et al. (2015) S 5 × 0.13 H, SS 0.02 − 0.24 0.6 − 1.2 90%
Ulgen et al. (2015) S 2 × 0.06 H 0.25 − 0.4 2 − 3.5 70%

Abuhajar et al. (2015) S 4.57 × 0.27 E 0.11 − 0.33 0.46 − 1.45 50%, 90%
4.57 × 0.53

In the second column, S and C stand for Square and Circle, respectively.
In the third column, dimensions are in width×thickness for square sections and in diameter×thickness for circular sections.
In the fourth column, H, E, and SS stand for Harmonic, Earthquake and Sine Sweep motions, respectively.

1.2 Organization of the report

In this report, we present all of the steps taken to achieve the objectives stated in §1.1.
We provide details of the centrifuge modeling effort in Chapter 2. Methods we used for
data archiving and processing are provided in Chapter 3. A brief review of the portions
of the NCHPR 611 report on quantifying the seismic demands in culvert structures are
provided in Chapter 4. We compare the experimental results against those estimated using
the NCHRP 611 method in Chapter 5. We go through the steps we took for numerical
modeling of the performed experiments and the calibration and validation of those models
using experimental data in Chapter 6. Conclusions and recommendations are provided in
Chapter 7.

8



Chapter 2

Centrifuge modeling

2.1 Centrifuge modeling and scaling laws

Scaling laws are used in centrifuge modeling so that the stress field at any point within the
model is similar to what is expected in the prototype. As shown in Figure 2.1, if we scale
down the size of the prototype by N , and increase the centrifugal acceleration by the same
amount, the stress field in the model and the prototype—e.g., γH in Figure 2.1—will be
similar. In other words, by using the aforementioned scaling law, we can capture the actual
nonlinear and pressure-dependent behavior of the soil with the scaled model. Scaling laws
for different parameters relevant to this research are listed in Table 2.1.

Table 2.1: Scaling laws (Madabhushi, 2014).

Parameter Model/Prototype
Length 1/N
Area 1/N2

Volume 1/N3

Mass 1/N3

Stress 1
Strain 1
Force 1/N2

Moment 1/N3

Time (dynamic) 1/N
Frequency N

Displacement 1/N
Velocity 1

Acceleration N

9



Figure 2.1: Scaling law for the stress field (Abuhajar et al., 2014).

2.2 UC Davis centrifuge and model container

We used the NEES@UCDavis Flexible Shear Beam Container 2 (FSB2), which has a number
of aluminum shear rings as well as rubber shear layers to replicate free-field shear conditions
in the soil deposit when no structure is present. The length, width, and height of this
container are shown in Figure 2.2. After model construction and instrumentation, the filled
container was mounted on the centrifuge arm to be spun. An illustrative example of a
mounted model is shown in Figure 2.3.

2.3 Soil properties

2.3.1 Mechanical properties of the Ottawa sand

Ottawa sand, which is a pure quartz sand composed of naturally rounded grains, was used
in the centrifuge experiments. Representative mechanical properties of the Ottawa sand
are summarized in Table 2.2.
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Figure 2.2: Geometry of the flexible shear beam container (FSB2).

Figure 2.3: Configuration of the instrumented container mounted on the 9m-radius centrifuge arm
(CGM, personal communication).
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Table 2.2: Mechanical properties of the Ottawa sand (CGM, personal comunication).

Soil paeameter Value
Specific gravity, Gs 2.673
Mean grain size, D50 ≈ 0.2 mm

Coefficient of uniformity, Cu 1.73
Coefficient of gradation, Cc 1.08

2.3.2 Air pluviation trials

We sought to place the sand in a dense state to represent the compacted select granular fills
utilized in Caltrans culvert construction practice. The properties of these fill materials were
obtained through personal communications with Caltrans engineers. An additional benefit
of testing dense sand is that loose sands tend to densify during shaking, thereby resulting
in significant evolutions of relative density during testing, whereas dense sand tends not to
experience significant changes of state when vibrated. This simplifies interpretation of the
test results. Therefore, we pluviated the sand at an average relative density of 93%. Details
of the trial tests conducted to achieve this relative density are provided in Esmaeilzadeh
Seylabi et al. (2017).

2.3.3 Shear wave velocity

Shear wave velocity measurements were obtained by bender elements (see, e.g. Brandenberg
et al., 2006) at four positions in the soil profile—namely, near the bottom of the container,
below the circular pipe, below the rectangular culvert, and close to the surface of the
container. Figure 2.4 displays the array next to the box structure. Center-to-center distance
between bender elements, which are piezoelectric transducers, were approximately 10 cm.
In all these arrays, three bender elements were used (one source, and two receivers). The
measurements were taken at 20g (during spinning). A high voltage step-wave motion was
imposed on the source bender element, which causes the element to rapidly bend and
induce a horizontally propagating shear wave with a vertical particle motion. Such a wave
travels through the soil and deforms the receivers, and results in a recorded voltage signal.
Shear wave velocity can then be estimated by measuring the time it takes for the waves to
travel between the receivers. Details of the bender element signal processing is provided in
Chapter 3.

12



Figure 2.4: An array of the bender elements used for measuring shear wave velocity.

2.4 Culvert structures

2.4.1 Mechanical properties of the culvert structures

The Caltrans Standard Plans (Department of Transportation State of California, 2015)
provide common configurations for culvert structures used in California. These culverts are
typically either corrugated steel pipes or reinforced concrete box structures. The model
structures, embedment depths, and soil properties adopted for the centrifuge models were
selected to be consistent with these commonly used culvert types.

Pipe structure

The model specimen is a uniform seamless aluminum pipe with a thickness of 0.16 cm (0.065
in) and inside diameter of 12.37 cm (4.87 in). It is made from Aluminum 6061-T6 with
E = 68.95 GPa (107 psi), γ = 26.48 kN/m3 (0.0975 lb/in3), and ν = 0.33 (all based on
manufacturer specifications rather than measurements). These dimensions were selected
to match the static flexural stiffness of a representative prototype corrugated steel pipe
structure (cf. Caltrans Standard Plans).
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Box structure

The specimen is a box tube with inside dimensions of 18.4cm×10.8cm (7.25in×4.25in) and
uniform thickness of 0.95 cm (0.375 in). Like the other specimen, it is made of Aluminum
6061-T6. These dimensions are selected to match the flexural stiffness of a representative
reinforced concrete culvert structure (cf. Caltrans Standard Plans).

2.4.2 Strain gauges

Strain gauges are used to measure the response demands in the specimens, which can also
be used to evaluate dynamic increments of internal forces. Our preliminary numerical
simulations, as explained in the next section, showed that both specimens would exhibit
measurable strains during seismic loading. We measured in-plane bending and in-plane
axial (hoop) strains using dense strain gauge arrays on the walls of each structure.

Determination of ideal sensor positions

In order to determine the ideal positions for strain gauges, a numerical model was with
a setting similar to the planned centrifuge experiments was developed, and analyses were
carried out using an in-house finite element code to solve the wave equations in the frequency
domain. The two-dimensional plane strain model was constructed with 8-node quadrilateral
elements. Periodic boundaries were applied along the left and right sides of the model to
mimic the behavior of the container walls. An elastic homogeneous soil with shear wave
velocity of 198 m/s, unit weight of 17.5 kN/m3 and Poisson’s ratio of 0.3 were considered
in all simulations. The properties of the box and pipe specimens were set as those for
aluminum. Using this model, the steady-state response of the structures were obtained
over frequency range of 0 to 25 Hz. Further details can be found in the data report by
Esmaeilzadeh Seylabi et al. (2017). Figures 2.5 and 2.6 display the amplitude of the in-
plane bending and hoop strain profiles for the pipe structure at three frequencies of 5,
14.5 and 25 Hz. These frequencies were chosen as the computed strain energy within the
structure was more significant at frequencies close to the natural frequencies of the soil
deposit— i.e., 4.95, 14.85, and 24.75 Hz for Vs = 198 m/s and layer thickness of 10 m. The
results indicated that the maximum bending strains would occur at θ = 45, 135, 225, and
315 degrees—a finding that enabled the optimal placement of the strain gauges.

Figure 2.7 displays the in-plane bending strain profile for the box structure at the selected
frequencies. The strain profiles along the walls and roof visually appear to conform with
linear or 2nd-order polynomial functions, whereas along the invert, strain profiles appear to
be more compatible with 3rd-order polynomials. In-plane axial strains are not shown for the
box structure, as they were very small in magnitude compared to the bending strain.

14



Figure 2.5: Amplitude of the steady-state bending strain profile of the pipe structure.

Figure 2.6: Amplitude of the steady-state hoop strain profile of the pipe structure.

Figure 2.7: Amplitude of the steady-state bending strain profile of the box structure.
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“OMEGA KFH-6-350-C1-11L3M3R” strain gauges were used, which are linear-pattern
prewired gauges with a nominal resistance of 350 Ω and three 3m leads. The gauge di-
mensions are 10.5 mm × 3.9 mm, and the gauge factor is 2.04. The gauge factor is defined
as:

GF =
∆R/R

ε
(2.1)

where R is the resistance of the strain gauge, ∆R is the change in the electrical resistance
and ε is the measured strain. Using this gauge factor, the nominal sensitivity of the strain
gauges can be obtained. Wheatstone full bridges were used to measure both bending and
hoop (axial) strains. Therefore, for the bending strain εb,

∆V

V
= GFεb (2.2)

and for the hoop (axial) strain εh,
∆V

V
= GF

1 + ν

2
εh . (2.3)

Therefore, for a Wheatstone full bridge configured to measure bending strain, the nominal
sensitivity is 2.04, and for the hoop full strains, it is 1.36. The latter is obtained by
multiplying the gauge factor by (1 + ν)/2, in which ν = 0.33 is the Poisson’s ratio of
aluminum.

For the gauge bonding inside and outside of the box, we used an “Omega TT300 complete
heat cure adhesive kit,” following a specific curing procedure of applying a uniform pressure
of about 207 kPa (30 psi) for 2 hours at the temperature of 125◦C. In order to accelerate the
process, the clamp mechanism shown in Figure 2.8 was used for installing multiple gauges
simultaneously.

Affixing the strain gauges to the inside of the pipe was not straightforward due to the curved
surface and small diameter of the pipe compared to the box. Applying the specified pressure
for the required duration ruled out the use of the TT300 adhesive. As an alternative, we
used the “instant Omega SG496 adhesive” to install the strain gauges manually, one pair
at a time. This adhesive is not as durable as the TT300, resulting in a shorter design
life for the pipe structure. However, we deemed the solution acceptable for a single test.
Figure 2.9 shows the steps we took for installation. A camera was installed inside the pipe
to aid alignment and placement of the strain gauges.

2.5 Model construction and instrumentation configurations

Ottawa sand was pluviated in the model container in 2.5 cm thick layers, using the same
procedure as that for trial air-pluviation (cf. §2.3.2). The surface of each layer was vacu-
umed to make it even. The pipe and box structures were placed such that the soil cover
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Figure 2.8: The clamp used for installation of strain gauges inside the box.

Figure 2.9: Installation of strain gauges inside and outside of the pipe.
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for each was 15.24 cm (0.5 ft) and 3 cm (0.1 ft), respectively. These soil covers are in
accord with the Caltrans Standard Plans. We used a hand-held vibrator to compact the
soil around the specimen. Finally, a thin 0.5 cm layer of Monterey sand was placed above
the last layer to prevent wind erosion during spinning. The top of the Monterey sand was
sprayed with glue to create a crust.

Figure 2.10 displays an elevation view of the centrifuge model.

Sensors were placed in six stages at different elevations in the model, including 59 accelerom-
eters. 43 of these were installed in soil or on the container while the rest were installed inside
the specimens. A frame was mounted on top of the container to secure the LPs in order to
measure the soil surface settlements and to capture the specimens’ vertical displacements.
Another frame was used to attach Linear Potentiometers (LPs) to the container wall and
to measure the associated lateral displacements (see Figure 2.10). All sensors used in the
model were connected to a data acquisition system as shown in Figure 2.3. We used thin
aluminum sheets to close the two-ends of each specimen in order to avoid intrusion of sand
inside the specimens. The plan views of the centrifuge model at different elevations are
shown in Figures 2.11-2.16. The configurations and labels of the sensors installed on the
pipe and box structures are provided in Figure 2.17.

The IDs used for labeling the sensors, along with their positions and configurations, are
provided in Table 2.3. X, Y , and Z are measured from the reference point located at the
center and bottom of the south wall of the container. (i, j, k) indicate how the sensors
are aligned. For ICPs (Integrated Circuit Piezoelectric sensors), LPs and bender elements,
(+1, 0, 0) is the positive direction of X axis and (0, 0, +1) is the positive direction of Z
axis. For strain gauges, (+1, 0, 0) represents in-plane axial strain and (0,+1,0) represents
in-plane bending strain. The remaining columns respectively provide information on the
serial numbers of the sensors in UC Davis’ inventory, the sensor sensitivities and their unit,
the maximum values of the sensors’ range and their unit, the DAQ ranges and their unit,
and the excitation values and their unit.
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Figure 2.11: Plan view of the constructed model at z = 10 cm.

Figure 2.12: Plan view of the constructed model at z = 17.8 cm.
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Figure 2.13: Plan view of the constructed model at z = 21 cm.

Figure 2.14: Plan view of the constructed model at z = 27.1 cm.

21



Figure 2.15: Plan view of the constructed model at z = 33.4 cm.

Figure 2.16: Plan view of the constructed model at z = 46.3 cm.
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Figure 2.17: Layout of the instrumentation for the rectangular and circular specimens.
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2.6 Ground motions

A total of 25 shaking events were applied at approximatelyN = 21g centrifugal acceleration.
Shaking was applied transverse to the culverts’ long axes in the north-south direction. The
sequence of the type of motions used to shake the model, including step-, earthquake-, and
sinusoidal-functions are provided in Table 2.4.

Three earthquake ground motions are used in this study, which are obtained from the
PEER ground motion database. The characteristics of these motions—i.e., target earth-
quake motions—are provided in Table 2.5. Figure 2.18 shows the 5%-damped spectral
accelerations and the Arias intensity time series of the target earthquake motions.

Since the shake table on the centrifuge cannot perfectly reproduce a target motion, some
signal modification needs to applied. This is typically achieved by first computing a com-
mand motion in which the high frequency content is increased relative to the target motion.
This accounts for a loss of high-frequency content due to the mechanics of the shake table
feedback control system. The achieved motion is then compared to the target motion, and
the command motion is adjusted. Through an iterative process, the achieved base motions
in the present tests were similar to, but not perfectly equivalent with, the target motions.
For this reason, we suggest always using the measured base motions when interpreting the
test data. The 5%-damped spectral accelerations and the Arias intensities of the measured
base motions for the earthquakes (i.e., motions #03 to #11) are shown in Figure 2.19.

Sine-sweep motions were also used to shake the model the prototype frequencies of up to
25 Hz. As mentioned before, it was expected that soil-structure interaction effects would
be more significant at higher frequencies. Two types—namely, constant acceleration and
constant-velocity—target motions were used. It was found that constant velocity motions
provided command inputs with richer high-frequency energy content.

The model was also excited with stepped-sine signals with discrete frequencies of 1.25, 1.85,
2.5, 3.75, 5, 7.5, 10, 17.5, and 25 Hz. At each iteration, the amplitudes of the stepped-
sine functions at different frequencies were updated so that the amplitude of measured
accelerations at the soil surface (as recorded by sensor AFH30) were nearly the same at
all discrete frequencies considered. It should be noted that ideally a sine sweep function
could be used for this purpose. However, calibration of the command input using sine
sweep functions was not straightforward. This is why stepped sine functions were applied.
Shaking the models with motions with the same surface acceleration amplitude permits
observation of the frequency-dependence of the structural response.
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Figure 2.18: 5%-damped spectral acceleration and Arias intensity time series of the earthquake
motions used in this study.

2.7 Known limitations

After excavation, we noticed that one of the wires of the BT3 bridge was slightly damaged,
which may have affected the recorded data. Moreover, BL8 and AR5 bridges were not
wired correctly. We also noticed that 6 ICPs inside the pipe specimen—which were labeled
as 11, 12, 13, 14, 15, and 16—were detached from the structure. However, after checking
the signals visually, it seemed that these detachments had happened after the shaking
events.

It should be noted that we have not excluded data from any sensors that did not function
properly in the archived data.
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Figure 2.19: 5%-damped spectral acceleration and Arias intensity time series of the measured base
motions for shake events #03 to #11.
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Chapter 3

Data archiving and processing

3.1 Data archiving and interactive data report

Experimental data are often documented as static reports that present relevant metadata—
such as model sketches, sensor lists, event sequences, etc.—and provide plots and tables
of recorded data. Such reports provide guidance to researchers who wish to use the data,
but the reports themselves do not provide any level of interaction that would enhance the
utility of posted data.

The data report prepared for this project is an interactive report written up as a Jupyter
notebook (e.g., Pérez and Granger, 2007) that is housed in DesignSafe.ci (Rathje et al.,
2017), which is the repository that also houses the data. Jupyter notebooks combine
code blocks, in which the data may be opened, processed, interrogated, and plotted, with
markdown blocks that contain descriptions of the data. The text and figures in the re-
port are written in HTML and co-exist with Python code that directly interacts with the
experimental data. Specific innovative features of the data report include:

1. An interactive data plotter with which users can select a specific event from a drop-down
menu, and subsequently plot data from any desired sensor. Users can also zoom and
pan desired portions of the data and click to extract specific data points of importance
(e.g., the maximum value of a specific data quantity). Users can also directly save a
PNG file to their computer of any desired data plot.

2. An interactive model sketch, which is embedded as an iframe object linked to an
Autodesk 360 drawing object. Users can zoom in and out to see various portions
of the model configuration and can measure desired dimensions using the interactive
tools.
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3. Tables containing sensor lists, event sequences, etc., which are directly rendered
from comma separated value files, and presented in HTML format using the jQuery
javascript. This eliminates the potential for a mismatch between the data report and
the table maintained by the research team.

The Jupyter notebook may be opened by any user with a DesignSafe.ci account to
explore the dataset and may also be used as a template for users who wish to adapt it to
their own datasets. A preview of the report is shown in Figure 3.1.

Figure 3.1: A preview of the interactive data report housed in DesignSafe.ci.
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3.2 Data processing

3.2.1 Bender element signal processing

Shear wave velocity is obtained by measuring the travel time of the wave between two bender
elements. The travel time between the two receivers in each elevation was used herein,
because peripheral sources of phase-lag cancel each other when making receiver-to-receiver
measurements, whereas they may cause errors in source-to-receiver measurements (Lee
and Santamarina, 2005). Obtaining good quality signals in large centrifuge experiments
is complicated because mechanical vibrations often have larger amplitudes than the shear
waves generated by the bender elements. These vibrations are reduced by digital filtering
and signal stacking to improve signal-to-noise ratio (Brandenberg et al., 2006), and occur
predominantly at frequencies lower than the bender element signals.

Three basic approaches have been identified for determining the shear wave travel time:
(i) observational techniques of the "start-to-start" and "peak-to-peak" signal in the source
and receivers, (ii) cross-correlation (CC) of the signals, and (iii) a cross-power spectrum
calculation of the signals (Yamashita et al., 2009). The last two approaches are techniques
that are applied in time and frequency domains, respectively. The first technique involves
visual selection of travel times, which is often subjective, particularly for source-to-receiver
measurements. We apply the second (CC) technique to automate the travel time picks;
and the continuous CC of two signals x(t) and y(t) can be computed as follows:

CCxy(τ) = lim
T→∞

1

T

∫ T

0
x(τ)y(t+ τ)dt (3.1)

where T is the signal time record and x(t) and y(t) are two received signals.

A sample signal of the four arrays and the procedure we used to process it is given in
Figure 3.2. Figure 3.2a shows the recorded signals from the two receiver benders for one
of the four element arrays installed in our model for a dataset close to the step function
pulse imposed. The signals were truncated to 2N number of data points, so that a Fast
Fourier Transform (FFT) could be performed. Four signals are plotted in Figure 3.2a, with
two signals for each receiver bender element. The source bender element is pulsed with a
positive step wave, then with a negative step wave and results for each are shown. High-
amplitude, low-frequency noise is superposed on the bender element signals, because the
centrifuge induces significant vibrations during spinning. Furthermore, the bender element
voltages all exhibit a sudden increase when the source is excited due to electrical coupling.
To reduce the influence of these factors, first the mean of positive and negative signals is
computed for each bender element. Then, the initial portion of the signal associated with
electrical coupling is truncated. Finally, the signals are baseline corrected by subtracting
a seventh-order polynomial fit to the signal. The resulting post-processed signals used
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for cross-correlation are shown in Figure 3.2c, and the cross-correlation versus time-lag is
shown in Figure 3.2d. The travel time is taken as the time-lag associated with the peak of
the absolute value of the cross-correlation. It is possible for the negative peak to be larger
than the positive peak depending on the orientation of the bender elements, which was not
recorded in these experiments.

Figure 3.2: Example procedure to process bender element receivers’ data (C4, C5) below the pipe
(C-array).

The cross-correlation procedure cannot always produce accurate travel times when the two
received signals differ due to wave dispersion, or when there are differences in the responses
of the bender elements. Thus, ad hoc procedures are often required. For example, travel
time for the array of bender elements located below the rectangular box (B array) was
selected in the present study visually by observing the peak-to-peak travel time, because the
peak in the cross-correlation signal did not correspond to the correct offset. Furthermore,
the shallow free-field bender element array (MS array) required special attention, because
the bender elements do not function as well at low confining pressures. In this case, the
signals were processed by a cosine taper, and were filtered using a high-pass Butterworth
filter in lieu of baseline correction.
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Table 3.1 shows the obtained shear wave velocities at different depths of the container.
Shear wave velocity is known to be a function of mean effective stress (σ′m) (see, e.g.,
Hardin and Drnevich, 1970) for granular soils. Agapaki et al. (2016) regressed the data
using three different functions, two of which were power laws that resulted in Vs = 0 at
σ′m = 0 (Hardin and Drnevich, 1970; Roesler, 1979), and the third was a form that permits
Vs > 0 at σ′m = 0. The regressions are illustrated in Figure 3.3. The form that best fits the
data was given by

Vs(m/s) = 141.6 + 92.1

(
σ′m
pa

)0.35

. (3.2)

where pa is the atmospheric pressure.
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Figure 3.3: Relationship between Vs and σ′
m.

Table 3.1: Shear wave velocities obtained from bender element arrays’ signal processing.

Bender element array Depth ratio (z/H) Vs (m/s)
Array MS 0.061 182.8
Array B 0.450 216.9
Array C 0.639 222.6
Array MB 0.797 243.8
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3.2.2 Initial data processing

The initial data processing was performed in two steps. First, we determined the initial
offset (or the reference points) of all the sensors. To achieve this, we used the signals
recorded during the spin-up, prior to any base shaking, while the centrifugal acceleration
was increased from 0 to about Ng = 21g. Plotting the measured signals against the total
acceleration, i.e. at =

√
(N2

g +1), it was possible to extract the zero-crossing location of the
fitted curve with at = 0 , which was then taken as the initial offset for the measurement of
that sensor. An example of the developed Jupyter notebook is shown in Figure 3.4 where
a 3rd-order polynomial was fitted first, and was extrapolated to the data range of sensor
BL7 (measuring bending strain on the box structure). After this first step, we truncated
the measured signals to extract their meaningful portions for further signal processing
and data interpretation. An screenshot of the developed Jupyter notebook is shown in
Figure 3.5.

3.2.3 Processing of the acceleration signals

Generally, we needed to process acceleration time-series prior to data interpretation and
numerical analyses. An screenshot of the developed Jupyter notebook for acceleration
signal processing is shown in Figure 3.6. We considered three steps for acceleration signal
processing:

1. Baseline correction: this was usually needed to remove constant, linear, or higher-
order polynomial trends in the measured signals.

2. Tapering: this was needed to make sure that the measured signals tended to zero at
the beginning and at the end of the time-series.

3. Filtering: this was needed to remove spurious frequencies from the measured signals.
We used the band-pass Buttherworth filter in both forward and reverse directions to
avoid altering the signals’ phases.

As shown in Figure 3.6, the polynomial order, the period of the taper function, the orders
of the bandpass filter and its associated frequencies can be defined by the user; and the
processed data can be saved for further analysis.

3.2.4 Processing of the strain signals

For processing of the strain data, we considered the following steps:

1. Static offset: as shown in Figures 3.7 and 3.8, the signal time-series did not start
from zero. This was because that the specimens deformed statically under the soil
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Figure 3.4: An screenshot of the developed Jupyter notebook for reading the sensor’s initial offsets.
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Figure 3.5: An screenshot of the developed Jupyter notebook for signal truncation.
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Figure 3.6: An screenshot of the developed Jupyter notebook for signal processing of acceleration
time series.
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overburden pressure, even when no base shaking was applied. In order to determine
the static offset at the beginning of each strain signal, we computed the mean value
of the first 100 data points as shown in the figures.

2. Linear detrending and tapering:We first removed the linear trend in the signal. This
was done to consider only the dynamic increments in the signals (the underlying
linear trend was probably due to unknown sensor drift, or physical compaction of
soil). Then, we applied a taper function to make sure that the signal reaches zero at
the beginning and at the end of the time-series.

3. Filtering: again, we applied a bandpass Buttherworth filter in both forward and
reverse directions to the strain data. We set the corner frequencies as 0.25 and 25 Hz
in prototype scale.

Application examples of the aforementioned steps on strain data are shown in Figures 3.7
and 3.8.
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Figure 3.7: An example of strain signal processing performed on signals recorded on the rectangular
structure during base shaking #9.
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Figure 3.8: An example of strain signal processing performed on signals recorded on the circular
structure during base shaking #9.
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Chapter 4

The NCHRP 611 approach

The current AASHTO LRFD Bridge Design Specifications do not cover the seismic re-
sponse of buried structures; and only the recent National Cooperative Highway Research
Program (NCHRP) Report 611—titled "Seismic Analysis and Design of Retaining Walls,
Buried Structures, Slopes, and Embankments"—offers various recommendations on the
topic. As culvert structures in transportation applications generally have a limited length,
their potential failure modes are due to their transverse deformations under transient ground
shaking—namely, ovaling and racking of circular and rectangular culverts, respectively (An-
derson et al., 2008)—, which are illustrated in Figure 4.1.

Vertically propagating shear wave front

Figure 4.1: Ovaling and racking deformation of the circular and rectangular cross sections.

4.1 Ovaling of a circular culvert

It is widely accepted that plane strain models provide reasonable approximations to the
failure modes of circular culverts, as their most critical mode is the ovaling deformation
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mode (Kontoe et al., 2014). Transient ovaling effects in circular culverts can be quantified
by the change in their diameters, which can then be used to obtain reasonable estimates
of the peak seismically induced internal forces. For flexible culverts, buckling is the most
critical failure mode, which is governed by the thrust force. For rigid culverts, on the other
hand, the lining deformation, bending, thrust, and the resulting strains are all important
parameters to evaluate (Anderson et al., 2008).

Currently, four analytical closed-form solutions are available (Wang, 1993b; Penzien, 2000a;
Park et al., 2009; Bobet, 2010), which are all based on the assumption that, under seismic
loading, the tunnel lining acts as an elastic beam subject to a uniform shear strain field
of amplitude γmax, wherein the inertial soil-lining interaction effects are ignored. As enu-
merated by Kontoe et al. (2014), the dynamic interaction can become important when (i)
the dimensions of the tunnel cross-section is comparable to the wavelengths of the seismic
loading, (ii) the tunnel is relatively shallow, and (iii) the structure is significantly stiffer
than the surrounding soil.

The methodology provided in NCHRP Report 611 (Anderson et al., 2008) is based on the
solution provided by Wang (1993b). An engineer needs to execute the following steps to
determine the seismic demands due to ovaling of the circular culvert:

1. Estimate the free-field ground strains (γmax) at the top and bottom elevations of the
culvert structure: For highway culverts with burial depths less than 50 ft, γmax may
be estimated using the equation below:

γmax =
τmax
Gm

, τmax = (PGA/g)σvRd (4.1)

where Gm is the effective-strain-compatible shear modulus of the surrounding soil,
PGA is the peak ground acceleration, σv is the overburden pressure at the depth cor-
responding to the invert of the culvert, and Rd is a depth-dependent stress reduction
factor given by

Rd =

{
1− 0.00233z z < 30ft
1.174− 0.00814z 30ft ≤ z ≤ 75ft

(4.2)

and z is the depth to the midpoint of the culvert. One may also estimate γmax by
performing free-field site response analysis.

2. Calculate of the flexibility and compressibility ratios: Compressibility (C©) and flex-
ibility (F©) ratios are used to determine the relative stiffness of the culvert lining
with respect to the surrounding ground (Wang, 1993b), and can be computed as:

F© =
Em(1− ν21)R3

6E1I1(1 + νm)
(4.3)

C© =
Em(1− ν21)R

E1A1(1 + νm)(1− 2νm)
(4.4)
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where Em is the strain-compatible elastic modulus, and νm is the Poisson’s ratio of
the surrounding soil. The terms R, E1, ν1, A1, t and I1 respectively denote nominal
radius, elastic modulus, Poisson’s ratio, cross-sectional area, thickness, and moment
of inertia of the culvert lining. For F© < 1, the lining is considered to be stiffer than
the surrounding soil while for F© > 1, it is expected that the lining deforms more
than the free-field.

3. Estimate the lining deformation and seismic demands: For estimation of the lining
diameter change (∆DEQ) and the resulting moment (M), it is recommended to con-
sider a full-slip interface assumption, which allows normal stresses without normal
separation and tangential forces. On the other hand, for estimation of the resulting
thrust (T ), a no-slip interface assumption is recommended. Therefore,

∆DEQ = ±1

3
k1F

©γmaxD (4.5)

M© = −1

6
k1

Em
1 + νm

R2γmax cos 2(θ +
π

4
) (full-slip) (4.6)

T© = −k2
Em

2(1 + νm)
Rγmax cos 2(θ +

π

4
) (no-slip) (4.7)

where

k1 = 12
1− νm

2F© + 5− 6νm
, (4.8)

k2 = 1 +
F©(1− 2νm)(1− C©)− 0.5(1− 2νm)2C© + 2

F©[(3− 2νm) + (1− 2νm)C©] + C©[2.5− 8νm + 6ν2m] + 6− 8νm
. (4.9)

4.2 Racking of a rectangular culvert

Contrary to circular culverts, no closed form solution is available for quantifying the racking
deformations in rectangular culverts. The procedure provided in NCHRP Report 611 is
based on the pseudo-static method proposed by Wang (1993b), which again does not take
inertial interaction effects into account. The following steps are recommended therein to
estimate the seismic demands due to racking of a rectangular culvert.

1. Estimate of the free-field ground strains (γmax) at the elevation of the culvert structure:
γmax can be computed following the procedure provided for circular culverts in §4.1.

44



Figure 4.2: Racking stiffness of the rectangular culvert.

2. Estimate the differential free-field relative displacement (∆freefield) at the corresponding
top and bottom elevations of the rectangular structure. That is:

∆freefield = Hγmax (4.10)

where H is the height of the structure. As seen in Equation (4.10), it is assumed that
the racking is due to a uniform shear strain field. This assumption is the same as
that used for ovaling of circular culverts.

3. Calculate the racking stiffness (Ks) of the structure: This value can be computed
through a simple structural frame analysis by applying a unit horizontal force at the
roof of the structure, while its base is restrained as shown in Figure 4.2 and reading
the resulting lateral displacement ∆. That is,

Ks =
1

∆
. (4.11)

4. Calculate the flexibility ratio: The flexibility ratio F� is the measure of the relative
stiffness of the structure to the surrounding soil and can be estimated as follows.

F� =
Gm
Ks

W

H
(4.12)

where W is the width of the culvert structure as shown in Figure 4.2.

5. Estimate the racking ratio: The racking ratio R� determines the ratio of the actual
racking deformation of the structure with respect to the free-field racking deformation
of the surrounding soil and can be defined as:

R� =
2F�

1 + F� . (4.13)
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Figure 4.3: Imposition of the racking displacement to determine the resulting internal forces and
moments from structural frame analysis.

6. Estimate the racking deformation of the structure: Using the racking ratio and the
free-field relative displacements, the racking deformation ∆s can be computed as
follows:

∆s = R�∆freefield . (4.14)

7. Determine the seismic demands: Internal forces and the resulting strains can be
computed by imposing the racking deformation at the roof of the structure as shown
in Figure 4.3, and by performing a structural frame analysis.
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Chapter 5

Comparison of centrifuge results with
the NCHRP 611 method

In this chapter, comparisons of seismic demands obtained from centrifuge test data with
those calculated using the NCHRP 611 method (see Chapter 4) are presented.

5.1 NCHRP 611 method

In order to compute seismic demands using the NCHRP 611 methodology, we first need to
estimate the free field maximum strain γmax in the soil deposit as well as the corresponding
effective compatible shear modulus Gm. Then, the seismic demands can be computed
following the steps outlined in Chapter 4.

5.1.1 Estimation of Gm at the elevation of the culvert structures

In Chapter 3, we provided details of a signal processing procedure for obtaining shear
wave velocities at different elevations of the soil deposit inside the container using bender
element sensors. Esmaeilzadeh Seylabi et al. (2018) also used a Bayesian approach to infer
the shear wave velocity profile using data measured by the far-field accelerometer array
{AA1,AC12,AD18,AE25,AF28} during low-amplitude earthquake motions (i.e., motions
#3, #4, and #5) with maximum input acceleration of ∼ 0.015g. The resulting estimated
shear wave velocity profile was given as,

Vs (m/s) = 16.905 + 192.976
( z
H

)0.331
, (5.1)
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Figure 5.1: Shear wave velocity profile obtained from post-processing of the bender element signals
and from a Bayesian estimation method.

which is shown in Figure 5.1 along with the curve fitted through the data points obtained
from bender element signal processing. As it will be shown in Chapter 6, using this new
shear wave velocity profile will result in acceleration responses that are highly correlated
with experimentally recorded ones. Therefore, in the subsequent analyses, we will use
Equation (5.1) for computing the shear wave velocity associated with small soil strains.
Then, one may also compute the maximum shear modulus Gmax as follows:

Gmax = ρV 2
s (5.2)

where ρ is the density of the soil deposit, which is equal to 1733 kg/m3 for the present case.

The maximum shear modulus may be an appropriate representation of Gm for only low-
amplitude motions for which the soil nonlinearity is negligible and the shear strains are very
small (i.e., ∼ 10−5). Therefore, we also need to use a representative modulus reduction curve
along with the computed Gmax to estimate the effective strain compatible shear modulus
Gm at elevations of the tested culvert structures. Based on available soil properties for the
Ottawa sand, one may use the empirical equations given by Menq (2003) to estimate the
modulus reduction curve. That is,

G

Gmax
=

1

1 + (γ/γr)
a (5.3)
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where

γr = 0.12C−0.6u

(
σ′m
pa

)0.5C−0.15
u

, a = 0.86 + 0.1 log

(
σ′m
pa

)
(5.4)

and Cu is the coefficient of uniformity, which, for Ottawa sand, is equal to 1.73. In order
to decrease the uncertainties emanating from the use of empirical equations, Esmaeilzadeh
Seylabi et al. (2018) used an approach to estimate the modulus reduction curve from far-
field acceleration data, which was similar to what was used for inferring the shear wave
velocities from the same data. A multi-axial cyclic plasticity model by Borja et al. (2000)
was used to model the nonlinear/inelastic behavior of the soil deposit. The mean value of
the estimated soil model parameters are as follows 1.

h =

[
0.107 + 0.474

( z
H

)4.581]
Gmax, m = 1.579, R = 0.0028 Gmax, H0 = 0 , (5.5)

Figure 5.2 displays the resulting modulus reduction curves from both approaches at the
elevations of the rectangular and circular structures. Finally, with using the estimated
G/Gmax curves and the Gmax profile, we can compute the effective-strain-compatible shear
modulus Gm for a given maximum shear strain in each event.

5.1.2 Estimation of γmax at the elevation of the culvert structures

For shallow structures one may use the procedure provided in Chapter 4 to estimate γmax.
However, in order to use that procedure, we need to know the effective compatible shear
modulus Gm, which itself is a function of γmax. Therefore, in order to use the NCHRP 611
method, we need to obtain it iteratively as follows:

1. To start the procedure (iteration i = 0), we need to have initial guesses for the
maximum shear strains at the elevation of the rectangular and circular culverts. In
order to compute the maximum strain at the elevation of the rectangular culvert, i.e.
γ�max,0, we use the acceleration measurements at AF28 and AE25, which correspond to
the elevations at the roof and invert levels of the culvert. The displacement responses
at these elevations can be computed by double integration of the acceleration time-
series. Then, the relative free-field displacement history ∆u�free-field can be computed
as follows.

∆u�free-field(t) = uAF28(t)− uAE25(t) . (5.6)

1Details of the nonlinear soil model and definitions of its parameters are provided later in Chapter 6. It
should also be noted here that our prior studies on centrifuge experiments involving structures embedded
in dry sands have demonstrated that this soil model exhibits very good performance in predicting the main
features of soil and embedded structure responses under broadband/seismic excitations (Zhang et al., 2017).
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Figure 5.2: Shear modulus reduction curves obtained from the empirical equations by (Menq,
2003) and from the Bayesian estimation (Esmaeilzadeh Seylabi et al., 2018) at the elevations of the
rectangular and circular culvert structures.

Since NCHRP 611 considers the purely uniform shear in estimation of the seismic
demands, γ�max,0 can be computed dividing the maximum relative free-field displace-
ment, i.e. ∆�

free-field, by the height of the culvert structure H. That is,

γ�max,0 =
∆�

free-field
H

. (5.7)

For the circular culvert, we use the acceleration measurements at AE27 and AC17 to
determine the relative free-field displacement at the elevation of the structure. That
is,

∆u©free-field(t) = uAE27(t)− uAC17(t) . (5.8)

Again, the maximum strain at the elevation of the circular culvert can be computed
by dividing the maximum relative free-field displacement ∆©free-field by the height (di-
ameter) of the structure D. Therefore,

γ©max,0 =
∆©free-field

D
. (5.9)

2. For iteration i, we can predict Gm for the rectangular and circular culverts using
γmax,i−1 and Figure 5.2. Then, we can correct the maximum shear strain γmax,i using
Equation 4.1.
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3. We need to repeat step 2 until |γmax,i−γmax,i−1| <= TOL for the predefined tolerance
TOL.

Figures 5.3, 5.4 and 5.5 show the iterative procedure for base shakings #3, #6, and #9,
respectively. The resulting maximum shear strains are also tabulated in Table 5.1. As
shown, in all cases the use of the iterative procedure results in higher maximum shear
strains compared to those obtained from dividing the relative free field displacements at
elevations of the rectangular and circular structures by the height of the structure.

As mentioned before, NCHRP 611 also suggests using 1D site response analysis to compute
the maximum shear strain. In order to investigate the accuracy of NCHRP 611 equa-
tions against this refined procedure, we performed 1D wave propagation analysis, using
the multiaxial cyclic plasticity model. The resulting maximum strain profiles for all nine
input motions are shown in Figure 5.6 and the strain values at elevations of the culverts
are provided in Table 5.1 (i.e., γ�max,1D and γ©max,1D). As shown, the shear profile is not
constant with depth (especially for medium and high amplitude motions) and its curva-
ture is a function of soil behavior and input motion characteristics. Moreover, the values
of maximum strain obtained from 1D wave propagation analysis are considerably smaller
than those obtained from the iterative procedure and are close to those obtained from the
experimental data (i.e., our initial guesses for the iterative procedure). The effect of this
difference will be studied in the subsequent sections.
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Figure 5.3: Iterations for computing γmax at the elevation of the rectangular and circular structures
when subjected to the base shaking #3.
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Figure 5.4: Iterations for computing γmax at the elevation of the rectangular and circular structures
when subjected to the base shaking #6.
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Figure 5.5: Iterations for computing γmax at the elevation of the rectangular and circular structures
when subjected to the base shaking #9.
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Figure 5.6: Maximum shear strain profile obtained from 1D wave propagation analyses.

Table 5.1: The computed maximum free field shear strains at the elevation of the rectangular and
circular structures.

Motion # γ�max,0 γ�max γ�max,1D γ©max,0 γ©max γ©max,1D
(milistrain) (milistrain) (milistrain) (milistrain) (milistrain) (milistrain)

3 0.054 0.067 0.020 0.041 0.066 0.046
4 0.092 0.127 0.036 0.075 0.124 0.082
5 0.061 0.086 0.025 0.043 0.080 0.059
6 1.019 1.495 0.298 0.823 1.504 0.943
7 1.235 1.882 0.497 1.082 2.477 1.950
8 0.381 0.612 0.138 0.313 0.815 0.412
9 4.580 9.108 0.993 3.855 18.181 2.355
10 3.553 16.993 0.983 2.508 7.022 4.088
11 2.156 8.280 0.702 1.702 7.660 3.039
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5.1.3 Seismic strains of the rectangular culvert

As mentioned in Chapter 4, for determination of the flexibility ratio, we need to compute
the racking stiffness Ks. To this end, we modeled the rectangular structure in ANSYS and
analyzed it under the unit horizontal force. This resulted inKs = 26882 kN/m. We consider
W and H to be equal to 4.3 m and 2.7 m, respectively, in prototype scale. After computing
the flexibility and racking ratios, we can compute the resulting racking displacement and
impose it on top of the structure to obtain internal forces and moments from a simple frame
analysis. We performed this analysis in ANSYS.

5.1.4 Seismic strains of the circular culvert

As mentioned in Chapter 4, we first need to determine the flexibility and compressibility
ratios to determine the internal forces in the circular culvert (see Equations 4.3 and 4.4).
After obtaining Gm, one can compute the effective-strain-compatible Young’s modulus of
the surrounding soil using the following equation

Em = 2Gm(1 + νm) (5.10)

where νm is the Poisson’s ratio of the soil and is equal to 0.3 for the present case. I1 and
A1 are the moment of inertia and area of the cross-section, and are equal to 1/12t31 and
t1, respectively, for the unit length of the circular culvert with the thickness of t1. After
the determination of F© and C©, we can calculate the internal forces and the resulting
strains for each test. In-plane bending strain (ε©b ) and in-plane axial (hoop) strain (ε©h )
are related to the internal bending (M©) and thrust (T©) as follows:

ε©b =
M©t1
2E1I1

, ε©h =
T©

A1
. (5.11)

5.2 Static and dynamic increments of measured strains

As mentioned in Chapter 2, we use the full bridge arrangement to measure the in-plane
bending and in-plane axial strains at different points along the edges of the structures. Prior
to interpretation and comparisons, the strain data need to be processed, the procedural
details of which are provided in §3.2.4 of Chapter 3.

In the following sections, we provide the strain results for both the static offset at the be-
ginning of each base shaking and the corresponding dynamic increment. It should be noted
that for the rectangular structure, the results for only the bending strains are provided.
This is mainly because the recorded in-plane axial strains were too small, even for the large
amplitude motions (see Figure 3.7).

54



5.3 Comparison of the in-plane bending strains for the rect-
angular culvert

In order to compare the experimental bending strain data against those computed using
the NCHRP 611 method, we need to obtain the maximum bending strain profiles. To this
end, we use the processed strain data from each event to determine the maximum bending
strain among all recorded bending strains on the rectangular structure as well as the time
it occurs. Then, we read the value of bending strains at all locations at the time that the
maximum bending strain has occurred. Figure 5.8 displays the bending strain comparisons
for each base shaking. In each sub-figure, the static offset of the experimental strains
at the beginning of the shaking is shown on the left. On the other hand, the maximum
dynamic increment (red bars) along with those obtained from the NCHRP 611 method
(blue bars) are shown on the right. It should be noted that different scaling factors are used
among different events. Therefore, these figures provide only a qualitative understanding
of differences between the experimental data and the NCHRP 611 analysis results.

In order to compare the actual bending strain values, we compute the maximum bending
strain for each event. Table 5.2 summarizes the values of the important parameters in-
cluding the flexibility and racking ratios, and the maximum bending strains. We observe
that:

• The application sequence of base shakings had negligible effects on the maximum
value of the static strain offset. However, the static offset profile has slightly changed
(specifically, along the invert and bottom sides of the culvert walls).

• Since the box structure remained elastic, F� is proportional to Gm. Therefore, as
the surrounding soil becomes softer, the flexibility ratio—and therefore the racking
ratio—decreases.

• In all cases, the NCHRP 611 method overestimates the maximum bending strain.

• The experimental bending strain profiles along the walls, roof, and invert vary almost
linearly, and conform to the bending strain profile obtained from static frame analysis.

In order to have a closer look at how the maximum bending strain is related to different pa-
rameters of interest (PoIs), we plot each PoI against the maximum bending strains obtained
from the centrifuge data directly, and the NCHRP method. This is shown in Figure 5.7.
Although the range of εCentrifugeb is different from the range of εNCHRPb , visually they both
follow similar trends, especially with respect to γmax and R.
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5.4 Comparison of the in-plane bending strains for the circu-
lar culvert

We use the same approach here for the circular culvert as we did for obtaining the bending
strain of the rectangular structure. Figure 5.10 displays the static offset and dynamic in-
crement of bending strain data recorded during different base shakings. Again, the bending
strain data obtained from the NCHRP 611 method are included in the figures for compar-
ison. As mentioned before, since the scaling factors that are used are not the same, these
figures only provide a qualitative means of comparison as well as how the static and dynamic
strain profiles vary with different motions. Table 5.3 summarizes the maximum values of
the bending strains along with PoIs, and their relationships are illustrated in Figure 5.9.
We observe that:

• The static strain offset increases as the model is subjected to more base shakings.
This may be partially due to the densification of the soil around of the structure.

• In all cases, the flexibility ratio is greater than 1; and its value decreases as the sur-
rounding soil becomes softer. Therefore, for low-amplitude motions, ovaling should
be the dominant mode of deformation of the structure. On the other hand, as F©

decreases, the relative stiffness of the structure with respect to the surrounding soil in-
creases, which would result in more (dynamic) SSI effects and therefore more complex
behavior. The bending strain profiles shown in the figures ascertain this observation.

• In general, the NCHRP method overestimates the bending strains.

• Again, although the range of εNCHRPb and εCentrifugeb differ, they vary similarly with
PoIs, especially with F© and γmax,0.

5.5 Comparison of the hoop strains for the circular culvert

We obtained the hoop strain profiles following the same procedure as before, which are
shown in Figure 5.12. The summary of the PoIs and maximum hoop strain values are
provided in Table 5.4 and Figure 5.11. We observe that:

• The static hoop strain offset is less sensitive than the static bending strain to the
application sequence of the base shakings.

• The computed compressibility ratios are less than 1 in all cases. Again, as the soil
becomes softer, the relative stiffness of the structure with respect to the surrounding
soil increases, and therefore, the compressibility ratio decreases. This can lead to
more complex hoop strain profiles under higher amplitude base shakings.

58



Static Dynamic

(a) Motion #3

Static Dynamic

(b) Motion #4

Static Dynamic

(c) Motion #5

Static Dynamic

(d) Motion #6

Static Dynamic

(e) Motion #7

Static Dynamic

(f) Motion #8

Static Dynamic

(g) Motion #9

Static Dynamic

(h) Motion #10

Static Dynamic

(i) Motion #11

Figure 5.8: Comparison of the experimental in-plane dynamic bending strains in the rectangular
culvert with those from the NCHRP 611 method.
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Figure 5.9: PoI correlation with maximum bending strain of the circular structure.
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Static Dynamic

(a) Motion #3

Static Dynamic

(b) Motion #4

Static Dynamic

(c) Motion #5
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(d) Motion #6
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(i) Motion #11

Figure 5.10: Comparison of the experimental in-plane dynamic bending strains in the circular
culvert against those from the NCHRP 611 method.
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• In general, the NCHRP method underestimates the hoop strains. This is while the
NCHRP analysis method suggests the use of the full-slip condition in computing the
thrust as a conservative approach to take care of amplifications due to dynamic SSI
effects. However, we observe that this conservative solution still underestimates the
hoop strains in the circular structure.

• The variations of εNCHRPh and εCentrifugeh with PoIs are similar, especially with respect
to C.
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Figure 5.11: PoI correlation with maximum hoop strain of the circular structure.

5.6 The racking of the rectangular structure

As shown, the bending strains computed using the NCHRP 611 method have a direct
relationship to the racking displacements imposed on the roof of the structure. In order to
see how the computed ∆s differs from the actual racking of the tested structure, we also
computed the experimental racking from the recorded accelerations on the structure. That
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Figure 5.12: Comparison of the experimental dynamic hoop strains in the circular culvert with
those from the NCHRP 611 method.
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is,

∆�
s,left = u7(t)− u1(t) (5.12)

∆�
s,right = u3(t)− u6(t) (5.13)

where ui(t) for i = {1, 3, 6, 7} are obtained from double integration of the processed acceler-
ation data. Figure 5.13 displays the time series of the resulting racking deformations along
the left and right walls of the structure along with the maximum racking deformations that
we obtained through the NCHRP 611 method. As shown, the racking displacements along
the left and right walls conform to each other and their maximum values are considerably
smaller than the NCHRP ∆s.
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Figure 5.13: Comparison of the rectangular structure racking displacements obtained from recorded
accelerations on the structure and from the NCHRP 611 method.
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5.7 Comparison of the von Mises stresses

In order to quantify the stress level in culvert cross sections, we also computed the von
Mises equivalent stress. This stress invariant is a typical metric used in the strength-
based design of metal components, and could also be applied to culverts. Using a scalar
invariant such as von Mises stress for comparisons of different methods is desirable in that
it combines discrepancies in all of the predicted-vs-measured stress/strain components into
single measure.

Assuming a plane strain condition2:

σ11 = Eε11, σ22 = 0, σ33 =
νE

(1 + ν)(1− 2ν)
ε11, σ12 = σ13 = σ23 = 0 , (5.14)

and therefore,

σvm =
√
σ211 + σ233 − σ11σ33 . (5.15)

Using the above equation and considering ν = 1/3 and E = 68.95 GPa for Aluminum,
Table 5.5 provides the resulting von Mises stresses σvm for each motion.

Table 5.5: Comparison of the Von Mises stress in the culvert structures.
Motion σ©

vm (MPa) σ©
vm (MPa) σ©

vm (MPa) σ�
vm (MPa) σ�

vm (MPa) σ�
vm (MPa) σ©

vm σ©
vm σ�

vm σ�
vm

# NCHRP NCHRP-1D Centrifuge NCHRP NCHRP-1D Centrifuge (1/3) (2/3) (4/6) (5/6)
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

3 0.4 0.3 0.2 0.5 0.2 0.2 2.0 1.5 2.5 1.0
4 0.7 0.5 0.4 0.9 0.3 0.4 1.8 1.25 2.3 0.75
5 0.4 0.3 0.2 0.6 0.2 0.2 2.0 1.5 3.0 1.0
6 6.6 4.4 4.7 6.7 2.0 2.2 1.4 0.9 3.0 0.9
7 10.4 8.4 5.5 7.8 3.0 2.8 1.9 1.5 2.8 1.1
8 3.8 2.1 1.7 3.6 1.0 1.4 2.2 1.2 2.6 0.7
9 62.4 10.0 22.8 17.4 5.1 4.2 2.7 0.4 4.1 1.2
10 26.8 16.4 16.0 22.1 5.1 4.7 1.7 1.0 4.7 1.1
11 29.0 12.6 10.0 16.8 4.0 3.8 2.9 1.3 4.4 1.1

5.8 Effects of using γmax,1D for computing bending and hoop
strains and racking displacements via the NCHRP 611
method

As shown in the previous sections, using the NCHRP 611 method with the iterative proce-
dure to compute γmax resulted in the over-estimation of bending strains in both rectangular

2It should be noted that in general σ22 is not zero and its effects should be considered in computing the
von Mises stress.
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and circular culverts. We repeated the NCHRP 611 procedure using γmax,1D as the input.
As mentioned before, we computed γmax,1D for each case by performing nonlinear 1D wave
propagation analyses in ABAQUS using soil model parameters obtained form the Bayesian
approach. We will use these parameters for our numerical simulations, as it will be discussed
in detail in Chapter 6.

Figures 5.14, 5.15 and 5.16 provide the dynamic bending strain profiles for the rectangular
culvert, dynamic bending strain profiles for the circular culvert, and the dynamic hoop strain
profiles for the circular culvert, respectively. Figure 5.17 displays the comparison of the
racking displacements in the rectangular culvert. As seen, using the more-refined procedure
to compute maximum free field shear strain resulted in bending strain profiles that are closer
to those measured in the centrifuge experiments, and tended to underestimate the profiles
in many cases. This trend is even worse for the hoop strains. Table 5.6 summarizes the
resulting maximum strain ratios compared to those we obtained using the NCHRP 611
iterative procedure. Moreover, as shown in Figure 5.17, the racking displacements have
also become in the same order of those computed from the experimental data. This shows
the importance of the choice for γmax if/when we want to use the NCHRP 611 method to
compute the seismic demands in culvert structures.

Table 5.6: Maximum bending and hoop strain ratio comparisons when we use the NCHRP 611
iterative procedure and the more-refined 1D site response analysis to compute the free shear strain.
Motion e�b , using γmax e�b , using γmax,1D e

©
b
, using γmax e

©
b
, using γmax,1D e

©
h
, using γmax e

©
h
, using γmax,1D

3 2.17 0.65 1.72 1.19 0.96 0.71
4 2.21 0.65 1.64 1.09 0.90 0.61
5 2.42 0.72 1.89 1.38 0.96 0.71
6 2.86 0.84 1.29 0.82 0.56 0.45
7 2.68 1.04 1.79 1.42 0.72 0.65
8 2.46 0.68 1.99 1.01 1.11 0.75
9 3.94 1.15 2.67 0.39 0.52 0.26
10 4.50 1.03 1.59 0.95 0.48 0.40
11 4.20 0.99 2.85 1.18 0.70 0.51
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Figure 5.14: Comparison of the experimental in-plane dynamic bending strains in the rectangular
culvert against those from the NCHRP 611 method when γmax,1D is used as the input maximum
free field shear strain.
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Figure 5.15: Comparison of the experimental in-plane dynamic bending strains in the circular
culvert against those from the NCHRP 611 method when γmax,1D is used as the input maximum
free field shear strain.
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(b) Motion #4
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(c) Motion #5
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(h) Motion #10

Static Dynamic

(i) Motion #11

Figure 5.16: Comparison of the experimental dynamic hoop strains in the circular culvert against
those from the NCHRP 611 method when γmax,1D is used as the input maximum free field shear
strain.
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Figure 5.17: Comparison of the rectangular structure racking displacement obtained from recorded
accelerations on the structure and from the NCHRP 611 method using γmax,1D as the input.

70



Chapter 6

Finite element modeling & analysis
of the centrifuge tests

In this chapter, we provide details of direct numerical modeling of the conducted centrifuge
experiments and investigate the predictive capabilities of the calibrated finite element model
to capture the key response parameters.

6.1 Development of the numerical model

In order to numerically study the dynamic SSI behavior of the centrifuge specimens, a
two-dimensional (2D) finite element model was constructed in prototype scale based on the
dimensions given in Figure 2.10. In experiments with earthquake excitations (i.e., motions
3 to 11), the scaling factor N ranges from 20.7g to 21.1g. As such, we decided to use
the same factor of N = 21g for all numerical simulations in this report. As shown in
Figure 6.1, the input motion is applied along the bottom boundary of the model, where the
vertical degrees of freedom are fixed. We did not model the container explicitly. Instead, we
imposed periodic boundary conditions along horizontal degrees of freedom at the left and
right vertical edges of the soil domain while their vertical degrees of freedom are fixed, since
a flexible shear beam container is used for the experiments. It should be noted that this
configuration is used in the dynamic loading steps of analyses. In order to set up the initial
stress conditions appropriately, we also performed a static analyses under gravity loading
prior to each dynamic analysis. During the static analyses, we fixed the horizontal degrees
of freedom at the left and right vertical edges of the discretized model, while leaving the
vertical degrees of freedom free.

We used bilinear plane-strain elements for modeling the soil and the rectangular structure
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and beam elements for modeling the circular structure. We also used frictional contact
elements to model sliding at the soil-structure interface. Following Deng et al. (2016) and
by considering the soil friction angle of φsoil = 35 degrees, the friction coefficient of the
interface elements is computed as,

tan (φinterface) = 0.7 tan (φsoil) ≈ 0.33 . (6.1)

Periodic	BCs Periodic	BCs

Contact	 elements

Figure 6.1: Mesh configuration of the finite element model used in numerical analysis.

As the structures were expected to behave linear elastically in all of the experiments, we
used linear elastic material models for both culverts using the properties of Aluminum
T60-61, which are γ = 26.5 kN/m3, E = 68.9 GPa and ν = 0.33. On other hand, for
capturing the nonlinear soil behavior, which is a relatively dense dry Ottawa sand, we used
a multi-axial cyclic plasticity model. Details of this model are provided next.

6.2 Multiaxial cyclic plasticity soil model: formulation, im-
plementation and validation

It is well known that soil nonlinearity comes into effect even at very small strain levels
(Dafalias and Popov, 1977). Therefore, it is generally necessary to model soil nonlinearity in
any dynamic SSI analysis. One of the soil models that is widely used to capture the behavior
of cohesionless soil deposits in numerical simulations is the pressure-dependent multi-yield-
surface model by Yang et al. (2003). However, this model has too many parameters, which
are required to capture the typical soils’ large strain and post-liquefaction behavior, and this
makes its calibration a formidable task. Since our experiments were in relatively dense dry
sand, we decided to use a simpler soil model derived in total stress space, which features
a small number of parameters. This model was the bounding surface multi-axial cyclic
plasticity soil model by Borja and Amies (1994); Borja et al. (2000), which has a vanishing
elastic region and viscous terms, which enable taking small-strain damping into account at
the material point level.
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6.2.1 Formulation

The total stress tensor σ of Borja’s model consists of two major—namely, the inviscid
(σinv) and the viscous (σvis)—parts, as given by

σ = σinv + σvis (6.2)

where
σinv = Ce : (ε− εp),

σvis = D : ε̇,
(6.3)

and Ce and D are elastic stiffness and viscous damping tensors, respectively; ε is the total
strain tensor; εp is the plastic strain tensor, and ε̇ is the total strain rate. In this study, a
linear stiffness-proportional damping is adopted (Borja et al., 2000), which can be devised
by defining D as

D =
2ξ0
ω0
Ce = a1C

e (6.4)

where ω0 is the frequency at which the small strain damping ratio is equal to ξ0. The inviscid
part of Borja’s model is based on J2-bounding surface plasticity theory with a vanishing
elastic region. The translation of the bounding surface with radius R is facilitated by the
exponential hardening modulus

H ′ = hκm +H0 (6.5)

where h and m are the exponential hardening parameters and for H0 > 0 the bounding
surface also hardens kinematically (for further formulations details, see Borja and Amies,
1994; Borja et al., 2000).

To achieve an optimal rate of convergence for the Newton’s method required in implicit
dynamic time-stepping methods, the consistent tangent moduli are required (Simo and
Hughes, 2000). Borja and Wu (1994) derived this fourth-order tensor as,

Cinv
ep =

dσinv
n+1

dεn+1
= K1⊗ 1 + ψIdev +

∂ψ

∂εn+1
⊗∆ε′ (6.6)

where Idev = I− 1
31⊗ 1, is the deviatoric identity tensor and K is the bulk modulus. The

parameter ψ is defined through the equation ∆σ′ = ψ∆ε′, where ∆σ′ and ∆ε′ denote the
deviatoric stress and strain increments, respectively. The third term on the right-hand side
of Eq. (6.6) renders Cinv

ep to be non-symmetric in general. However, as demonstrated by
Borja and Wu (1994), the symmetric part of this consistent tangent stiffness tensor is often
adequate to produce accurate solutions at superlinear convergence rates. Incidentally, a
symmetric tangent also facilitates significant savings in computer memory requirements as
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well as in flops for solving the system-level equilibirum equations. Furthermore, one can
relate the viscous stress increment to the total strain increment as follows:

σvis
n+1 = Cvis

ep : dεn+1 =
2ξ0
ω0
Ce : ε̇n+1 =

1

dt
2ξ0
ω0
Ce : dεn+1 (6.7)

which yields,

Cvis
ep =

1

dt
2ξ0
ω0
Ce . (6.8)

By only retaining the symmetric part of the consistent tangent of Borja’s model, we obtain
the total consistent tangent stiffness moduli as,

Cep = Cinv
ep,symm +Cvis

ep = K1⊗ 1 + ψIdev +
1

dt
2ξ0
ω0
Ce (6.9)

where dt is the time increment chosen for the time discretization of ε̇n+1.

6.2.2 Implementation and validation

We implemented all variants of the model—namely, plastic, plastic with viscous damp-
ing, with symmetric or non-symmetric tangent, plane-strain, axisymmetric, and three-
dimensional—in the commonly used commercial finite element analysis software ABAQUS
(Hibbit et al., 2007), through its user-defined material (UMAT) subroutine interface.

For verification, we made comparisons of 1D wave propagation analysis results with those
obtained using DEEPSOIL (Hashash et al., 2016), which is a well-known computer code
for site response analysis that features linear, equivalent linear, and validated nonlinear soil
models. Here, we opted to use its nonlinear module, which is based on a pressure-dependent
hyperbolic model by Matasovic (1993). Reasonable—and otherwise unremarkable—soil
and model parameters were chosen for these verification simulations: the height of the soil
column was 28.9 m, Gmax = 8 MPa, h = Gmax, m = 0.5, R = 50 kPa, ω0 = 4π rad/s,
ξ0 = 1%, and H0 = 0. Fig. 6.2 displays the acceleration time-series and the 5%-damped
spectral accelerations obtained at the surface of the soil column, which was subjected to
a Ricker wavelet with a central frequency that is equal to the natural frequency of the
homogeneous soil layer considered. Fig. 6.3 displays the results obtained for the same soil
column when it was subjected to an earthquake motion. As shown, for both cases, the
results of the implemented soil model are in very good agreement with those obtained
using DEEPSOIL, especially after adding the viscous damping term.

For studying the multi-axial capability of this soil model, we used a series of centrifuge
experiments on buried reservoirs in dry Nevada sand and observed its superior performance
against the nominally more complex pressure-dependent multi-yield surface soil model.
Details of those comparisons are omitted for brevity and can be found in (Zhang et al.,
2017).
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Figure 6.2: 1D site response analysis: (a) acceleration history and (b) 5%-damped spectral accel-
eration subjected to the Ricker wavelet input.
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Figure 6.3: 1D site response analysis: (a) acceleration history and (b) 5%-damped spectral accel-
eration subjected to earthquake input.
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6.3 Calibration of the soil parameters from centrifuge data

Borja’s model can be defined by small strain shear wave velocity profile, modulus reduction
curves, small strain damping, and shear strength of the soil deposit at hand. It can be
shown that under the simple shear test condition, the following relationship exists between
the normalized shear modulus G/Gmax and shear strain γ using Borja’s model (Chao and
Borja, 1998).

G

Gmax
+

3

2γ

∫ 2Giγ

0

[
h

(
R/
√

2 +Gγ − τ
τ

)m
+H0

]−1
dτ − 1 = 0. (6.10)

Therefore, for the given G/Gmax curve, one can obtain the unknown parameters h, m, R
and H0 by solving a series of nonlinear equations or via the least squares method (Zhang
et al., 2017). As mentioned earlier in Chapter 5, we used a Bayesian approach to infer the
shear wave velocity, G/Gmax and the small strain viscous damping coefficient a1 from free
field acceleration measurements. Assuming a power function for the shear wave velocity
profile and the hardening parameter h resulted in

Vs (m/s) = 16.905 + 192.976
( z
H

)0.331
(6.11)

and

h =

[
0.107 + 0.474

( z
H

)4.581]
Gmax (6.12)

along with other parameters estimated as

m = 1.579, R = 0.0028 Gmax, a1 = 0.0031 . (6.13)

We also assumed that H0 = 0. Figure 6.4 displays the resulting calibrated shear wave
velocity profile and the G/Gmax curves for different depths, which are used in various
numerical analyses of this report.

6.4 Numerical analyses

We used the calibrated soil model in finite element models of the centrifuge tests and
performed numerical simulations using the earthquake excitations as input motions. To
examine the predictive capabilities of the finite element models, we present the measured
and numerically computed accelerations at various locations within the soil and on the
specimen structures, the bending strains along the rectangular structure, and the bending
and hoop strains along the circular structure in the following subsections.
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Figure 6.4: Calibrated shear wave velocity profile and G/Gmax curves over the depth.

6.4.1 Comparison of horizontal accelerations in soil

Figures 6.5-6.13 display comparisons of horizontal acceleration time-series and Fourier am-
plitudes for the left/southern acceleration array (i.e., locations AA1, AC12, AD18, AE25
and AF28). Figures 6.14-6.22 display similar data for the middle array (i.e., locations
AAH5, AC16, ADH23, AE26 and AFH30). For the reader’s convenience, we recall here
that the motions 3-5 were low-amplitude, 6-8 were moderate amplitude, and 9-11 were high
amplitude excitations (see Figure 2.19). As shown, the finite element models generally cap-
ture the time-series and the Fourier amplitude spectra of the measured accelerations for all
motion amplitudes. It should be noted that we used only the left array acceleration data
from motions #3 and #9 for calibrating the soil constitutive model parameters. Moreover,
as shown, ICP AAH5 was only functional during motions 3, 4, and 5.

6.4.2 Comparison of horizontal accelerations of culvert specimens

Figures 6.23-6.31 display the comparisons for the time series and Fourier amplitude spectra
of horizontal accelerations for the rectangular (locations 7 and 1) and circular (locations
16 and 14) culverts. Again, the agreement between the numerical and experimental results
for all motions are generally very good.
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Figure 6.5: Time series and Fourier amplitude spectra of the accelerations recorded at the left array
(AA1, AC12, AD18, AE25 and AF28) for motion #3.
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Figure 6.6: Time series and Fourier amplitude spectra of the accelerations recorded at the left array
(AA1, AC12, AD18, AE25 and AF28) for motion #4.
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Figure 6.7: Time series and Fourier amplitude spectra of the accelerations recorded at the left array
(AA1, AC12, AD18, AE25 and AF28) for motion #5.
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Figure 6.8: Time series and Fourier amplitude spectra of the accelerations recorded at the left array
(AA1, AC12, AD18, AE25 and AF28) for motion #6.
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Figure 6.9: Time series and Fourier amplitude spectra of the accelerations recorded at the left array
(AA1, AC12, AD18, AE25 and AF28) for motion #7.
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Figure 6.10: Time series and Fourier amplitude spectra of the accelerations recorded at the left
array (AA1, AC12, AD18, AE25 and AF28) for motion #8.
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Figure 6.11: Time series and Fourier amplitude spectra of the accelerations recorded at the left
array (AA1, AC12, AD18, AE25 and AF28) for motion #9.
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Figure 6.12: Time series and Fourier amplitude spectra of the accelerations recorded at the left
array (AA1, AC12, AD18, AE25 and AF28) for motion #10.
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Figure 6.13: Time series and Fourier amplitude spectra of the accelerations recorded at the left
array (AA1, AC12, AD18, AE25 and AF28) for motion #11.
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Figure 6.14: Time series and Fourier amplitude spectra of the accelerations recorded at the middle
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #3.
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Figure 6.15: Time series and Fourier amplitude spectra of the accelerations recorded at the middle
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #4.
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Figure 6.16: Time series and Fourier amplitude spectra of the accelerations recorded at the middle
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #5.
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Figure 6.17: Time series and Fourier amplitude spectra of the accelerations recorded at the middle
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #6.
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Figure 6.18: Time series and Fourier amplitude spectra of the accelerations recorded at the middle
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #7.
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Figure 6.19: Time series and Fourier amplitude spectra of the accelerations recorded at the middle
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #8.
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Figure 6.20: Time series and Fourier amplitude spectra of the accelerations recorded at the middle
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #9.
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Figure 6.21: Time series and Fourier amplitude spectra of the accelerations recorded at the middle
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #10.
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Figure 6.22: Time series and Fourier amplitude spectra of the accelerations recorded at the middle
array (AAH5, AC16, ADH23, AE26 and AFH30) for motion #11.
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Figure 6.23: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on
the specimen structures (7, 1, 16 and 14) for motion #03.
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Figure 6.24: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on
the specimen structures (7, 1, 16 and 14) for motion #04.
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Figure 6.25: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on
the specimen structures (7, 1, 16 and 14) for motion #05.
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Figure 6.26: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on
the specimen structures (7, 1, 16 and 14) for motion #06.
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Figure 6.27: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on
the specimen structures (7, 1, 16 and 14) for motion #07.
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Figure 6.28: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on
the specimen structures (7, 1, 16 and 14) for motion #08.
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Figure 6.29: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on
the specimen structures (7, 1, 16 and 14) for motion #09.
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Figure 6.30: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on
the specimen structures (7, 1, 16 and 14) for motion #10.
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Figure 6.31: Time series and Fourier amplitude spectra of the horizontal accelerations recorded on
the specimen structures (7, 1, 16 and 14) for motion #11.

6.4.3 Comparison of in-plane bending strains for rectangular culvert

To compare the maximum bending strain profiles, we used the processed strain data of
each event to determine the maximum in-plane bending strains among all the recorded
data on the rectangular structure and the time it occurred. Then, we read the value of
bending strains at all locations at that particular time. We followed the same procedure
to extract the bending strain profile from the numerical simulations. Figures 6.32-6.49
display the comparisons for the time series and Fourier amplitude spectra of the dynamic
bending strains for the rectangular culvert, and Figures 6.50-6.58 display the comparisons
for both static and dynamic bending strain profiles. Again, as shown, the numerical model
was successful in capturing bending strain data for all (low, medium, high amplitude) base
shaking events.
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Figure 6.32: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #03.
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Figure 6.33: Comparison of the Fourier amplitude spectra of the rectangular structure for motion
#03.
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Figure 6.34: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #04.

0 2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

1

2

3

4

BT1
Numerical Experimental

0 2 4 6 8 10
0

1

2

3

BT6

0 2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

0.5

1

BL7

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

BL10

0 2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

0.5

1

1.5

2

BB11

0 2 4 6 8 10
0

1

2

3

4

BB16

Frequency (Hz)
0 2 4 6 8 10

F
A

 (
µ
ǫ
.s

)

0

1

2

3
BL17

Frequency (Hz)
0 2 4 6 8 10

0

0.5

1

1.5

BL20

Figure 6.35: Comparison of the Fourier amplitude spectra of the rectangular structure for motion
#04.
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Figure 6.36: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #05.
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Figure 6.37: Comparison of the Fourier amplitude spectra of the rectangular structure for motion
#05.
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Figure 6.38: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #06.
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Figure 6.39: Comparison of the Fourier amplitude spectra of the rectangular structure for motion
#06.
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Figure 6.40: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #07.
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Figure 6.41: Comparison of the Fourier amplitude spectra of the rectangular structure for motion
#07.
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Figure 6.42: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #08.
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Figure 6.43: Comparison of the Fourier amplitude spectra of the rectangular structure for motion
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Figure 6.44: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #09.
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Figure 6.45: Comparison of the Fourier amplitude spectra of the rectangular structure for motion
#09.
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Figure 6.46: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #10.
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Figure 6.47: Comparison of the Fourier amplitude spectra of the rectangular structure for motion
#10.
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Figure 6.48: Comparison of the time series of the dynamic bending strains of the rectangular
structure for motion #11.
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Figure 6.49: Comparison of the Fourier amplitude spectra of the rectangular structure for motion
#11.
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Static Dynamic

Figure 6.50: Comparison of the maximum static and dynamic bending strain profiles of the rect-
angular structure for motion #03.

Static Dynamic

Figure 6.51: Comparison of the maximum static and dynamic bending strain profiles of the rect-
angular structure for motion #04.

Static Dynamic

Figure 6.52: Comparison of the maximum static and dynamic bending strain profiles of the rect-
angular structure for motion #05.
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Static Dynamic

Figure 6.53: Comparison of the maximum static and dynamic bending strain profiles of the rect-
angular structure for motion #06.

Static Dynamic

Figure 6.54: Comparison of the maximum static and dynamic bending strain profiles of the rect-
angular structure for motion #07.

Static Dynamic

Figure 6.55: Comparison of the maximum static and dynamic bending strain profiles of the rect-
angular structure for motion #08.
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Static Dynamic

Figure 6.56: Comparison of the maximum static and dynamic bending strain profiles of the rect-
angular structure for motion #09.

Static Dynamic

Figure 6.57: Comparison of the maximum static and dynamic bending strain profiles of the rect-
angular structure for motion #10.

Static Dynamic

Figure 6.58: Comparison of the maximum static and dynamic bending strain profiles of the rect-
angular structure for motion #11.
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6.4.4 Comparison of in-plane bending strains for circular culvert

Similarly, Figures 6.59-6.76 display the comparisons for the time series and Fourier ampli-
tude spectra of the dynamic bending strains for the circular culvert, and Figures 6.77-6.85
display the comparisons for both static and dynamic bending strain profiles. As shown,
the numerical model approach is again successful in general to capture bending strain time
series. However, agreements are not perfect at all locations. Moreover, although the nu-
merical model is successful in capturing the dynamic strain profile, it was unable to do so
for the static case. This can be partially attributed to the fact that we are not modeling
the soil densification in our numerical simulations and the initial condition is the same for
all experiments. This is while in the actual centrifuge experiment we possibly had some soil
densification around the circular structure as it was difficult to pluviate soil uniformly, and
we had to use a hand vibrator to increase soil densification around it prior to the test. It
is likely that this effort was not entirely successful. That said, the static strains are much
smaller than the dynamic strains, and are incidentally more difficult to measure.
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Figure 6.59: Comparison of the time series of the dynamic bending strains of the circular structure
for motion #03.

6.4.5 Comparison of hoop strains for circular culvert

Figures 6.86-6.103 display the comparisons for the time series and Fourier amplitude spectra
of hoop strains for the circular culvert, and Figures 6.104-6.112 show comparisons for both
the static and dynamic hoop strain profiles. In general, the range of hoop strains are
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Figure 6.60: Comparison of Fourier amplitude spectra of the circular structure for motion #03.
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Figure 6.61: Comparison of the time series of the dynamic bending strains of the circular structure
for motion #04.
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Figure 6.62: Comparison of the Fourier amplitude spectra of the circular structure for motion #04.
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Figure 6.63: Comparison of the time series of the dynamic bending strains of the circular structure
for motion #05.
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Figure 6.64: Comparison of the Fourier amplitude spectra of the circular structure for motion #05.
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Figure 6.65: Comparison of the time series of the dynamic bending strains of the circular structure
for motion #06.
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Figure 6.66: Comparison of the Fourier amplitude spectra of the circular structure for motion #06.
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Figure 6.67: Comparison of the time series of the dynamic bending strains of the circular structure
for motion #07.
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Figure 6.68: Comparison of the Fourier amplitude spectra of the circular structure for motion #07.
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Figure 6.69: Comparison of the time series of the dynamic bending strains of the circular structure
for motion #08.
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Figure 6.70: Comparison of the corresponding Fourier amplitude spectra of the circular structure
for motion #08.
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Figure 6.71: Comparison of the time series of the dynamic bending strains of the circular structure
for motion #09.
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Figure 6.72: Comparison of the Fourier amplitude spectra of the circular structure for motion #09.

10 12 14 16 18 20

S
tr

a
in

 (
µ
ǫ
)

-400

-200

0

200
A10Numerical Experimental

10 12 14 16 18 20
-200

0

200

400

A11

10 12 14 16 18 20
-200

-100

0

100

200

A12

10 12 14 16 18 20

S
tr

a
in

 (
µ
ǫ
)

-400

-200

0

200
A1

10 12 14 16 18 20
-200

0

200

400

A2

10 12 14 16 18 20
-200

0

200

400

A3

10 12 14 16 18 20

S
tr

a
in

 (
µ
ǫ
)

-200

-100

0

100

200
A4

10 12 14 16 18 20
-200

-100

0

100

200
A5

Time (Sec)
10 12 14 16 18 20

-200

-100

0

100

200

A6

Time (Sec)
10 12 14 16 18 20

S
tr

a
in

 (
µ
ǫ
)

-200

-100

0

100

200
A7

Time (Sec)
10 12 14 16 18 20

-200

-100

0

100

200
A8

Time (Sec)
10 12 14 16 18 20

-200

-100

0

100

200
A9

Figure 6.73: Comparison of the time series of the dynamic bending strains of the circular structure
for motion #10.
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Figure 6.74: Comparison of the Fourier amplitude spectra of the circular structure for motion #10.
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Figure 6.75: Comparison of the time series of the dynamic bending strains of the circular structure
for motion #11.
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Figure 6.76: Comparison of the Fourier amplitude spectra of the circular structure for motion #11.

Static Dynamic

Figure 6.77: Comparison of the maximum static and dynamic bending strain profiles of the circular
structure for motion #03.
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Static Dynamic

Figure 6.78: Comparison of the maximum static and dynamic bending strain profiles of the circular
structure for motion #04.

Static Dynamic

Figure 6.79: Comparison of the maximum static and dynamic bending strain profiles of the circular
structure for motion #05.

Static Dynamic

Figure 6.80: Comparison of the maximum static and dynamic bending strain profiles of the circular
structure for motion #06.
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Static Dynamic

Figure 6.81: Comparison of the maximum static and dynamic bending strain profiles of the circular
structure for motion #07.

Static Dynamic

Figure 6.82: Comparison of the maximum static and dynamic bending strain profiles of the circular
structure for motion #08.

Static Dynamic

Figure 6.83: Comparison of the maximum static and dynamic bending strain profiles of the circular
structure for motion #09.
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Static Dynamic

Figure 6.84: Comparison of the maximum static and dynamic bending strain profiles of the circular
structure for motion #10.

Static Dynamic

Figure 6.85: Comparison of the maximum static and dynamic bending strain profiles of the circular
structure for motion #11.
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smaller than the bending strains, and as such, they inherently have inherently lower signal-
to-noise ratios. Not surprisingly, therefore, we could achieve better agreements between
experimental hoop strain data and FE results for higher amplitude motions. Although
the agreement is not uniformly good at all locations, the numerical model could capture
very similar static and dynamic hoop strain profiles in general; and interestingly, the static
profile agreement is much better than what was observed for the static in-plane bending
strains shown previously.
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Figure 6.86: Comparison of the time series of the dynamic hoop strains of the circular structure for
motion #03.

6.4.6 Maximum dynamic deformation profiles of culvert specimens

In order to investigate the dominant mode of deformation in both structures when the
bending strain is maximum, we read the dynamic displacements of different nodes along
the edge of the structure at the same time that we obtained the bending strain profiles.
Figures 6.113 and 6.114 display the maximum deformation profiles for both the rectangular
and the circular structure under all 9 motions. It should be noted that in both figures the
resulting deformations are magnified 100 times.
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Figure 6.87: Comparison of the Fourier amplitude spectra of the circular structure for motion #03.
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Figure 6.88: Comparison of the time series of the dynamic hoop strains of the circular structure for
motion #04.
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Figure 6.89: Comparison of the Fourier amplitude spectra of the circular structure for motion #04.
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Figure 6.90: Comparison of the time series of the dynamic hoop strains of the circular structure for
motion #05.
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Figure 6.91: Comparison of the Fourier amplitude spectra of the circular structure for motion #05.
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Figure 6.92: Comparison of the time series of the dynamic hoop strains of the circular structure for
motion #06.
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Figure 6.93: Comparison of the Fourier amplitude spectra of the circular structure for motion #06.
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Figure 6.94: Comparison of the time series of the dynamic hoop strains of the circular structure for
motion #07.
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Figure 6.95: Comparison of the Fourier amplitude spectra of the circular structure for motion #07.
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Figure 6.96: Comparison of the time series of the dynamic hoop strains of the circular structure for
motion #08.
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Figure 6.97: Comparison of the Fourier amplitude spectra of the circular structure for motion #08.
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Figure 6.98: Comparison of the time series of the dynamic hoop strains of the circular structure for
motion #09.
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Figure 6.99: Comparison of the Fourier amplitude spectra of the circular structure for motion #09.
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Figure 6.100: Comparison of the time series of the dynamic hoop strains of the circular structure
for motion #10.
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Figure 6.101: Comparison of the Fourier amplitude spectra of the circular structure for motion
#10.
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Figure 6.102: Comparison of the time series of the dynamic hoop strains of the circular structure
for motion #11.
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Figure 6.103: Comparison of the Fourier amplitude spectra of the circular structure for motion
#11.

Static Dynamic

Figure 6.104: Comparison of the maximum static and dynamic hoop strain profiles of the circular
structure for motion #03.
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Static Dynamic

Figure 6.105: Comparison of the maximum static and dynamic hoop strain profiles of the circular
structure for motion #04.

Static Dynamic

Figure 6.106: Comparison of the maximum static and dynamic hoop strain profiles of the circular
structure for motion #05.

Static Dynamic

Figure 6.107: Comparison of the maximum static and dynamic hoop strain profiles of the circular
structure for motion #06.
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Static Dynamic

Figure 6.108: Comparison of the maximum static and dynamic hoop strain profiles of the circular
structure for motion #07.

Static Dynamic

Figure 6.109: Comparison of the maximum static and dynamic hoop strain profiles of the circular
structure for motion #08.

Static Dynamic

Figure 6.110: Comparison of the maximum static and dynamic hoop strain profiles of the circular
structure for motion #09.
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Static Dynamic

Figure 6.111: Comparison of the maximum static and dynamic hoop strain profiles of the circular
structure for motion #10.

Static Dynamic

Figure 6.112: Comparison of the maximum static and dynamic hoop strain profiles of the circular
structure for motion #11.
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Figure 6.113: Maximum deformation plot for rectangular structure.

Motion#03 Motion#04 Motion#05

Motion#06 Motion#07 Motion#08
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Figure 6.114: Maximum deformation plot for circular structure.
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6.4.7 Error analysis

In order to summarize the capability of the calibrated numerical model in predicting differ-
ent response parameters studied in this report, we compute the relative root-mean-square
error (RMSE) for each response parameter as follows:

Relative RMSE =

√[
1
n

∑n
k=1

(
rexpk − rnumk

)2]√[
1
n

∑n
k=1

(
rexpk

)2] × 100% (6.14)

where n is the total number of time steps considered in the response time-series; and rexp

and rnum are the experimental and numerical response time-series, respectively. Considering
each data point in the response time-series as different predictions in the dataset, the relative
RMSE can be interpreted as the coefficient of variation, i.e. σ/|µ|, where σ is the standard
deviation and |µ| is the absolute mean value.

Figures 6.115 and 6.123 display the relative RMSE for all base shakings used in this report.
We recall that AA1, AD18, AF28, AC16, AE26, and AFH30 are the ICPs measuring
horizontal accelerations at the left and middle arrays in the soil; 7 and 1 are the ICPs at
the bottom and top of the left wall of the rectangular structure; BT1, BL7, BB16, and
BL17 are the bending strain bridges at corners of the rectangular culvert; 16 and 14 are
the ICPs measuring the horizontal accelerations at θ=180 and 270 degrees, respectively, of
the circular culvert; A11, A2, A5, and A8 are the bending strain bridges at θ=45, 135, 225,
315 degrees; and A23, A14, A17, and A20 are the hoop strain bridges at θ=45, 135, 225,
315 degrees. As shown, RMSE is less for higher amplitude motions in general, which is due
to inherently higher signal-to-noise ratios in those experiments.

Finally, Table 6.1 summarizes the resulting maximum bending strain ratios for the rectan-
gular culvert, maximum bending and hoop strain ratios for the circular culvert, and von
Mises stress for both culverts, compared to those we obtained using the finite element model
(FEM).

131



Table 6.1: Maximum bending and hoop strain ratios, and von Mises stress ratios between experiment
and FE model predictions.

Motion e�b e©b e©h σ�vm σ©vm

3 0.89 1.37 0.98 0.89 1.29
4 0.81 1.14 0.81 0.81 1.17
5 0.77 1.26 0.87 0.77 1.26
6 1.05 0.86 0.49 1.05 0.89
7 1.17 1.33 0.63 1.17 1.15
8 0.83 0.87 0.88 0.83 0.91
9(a) 1.07 0.63 0.34 1.07 0.59
10 1.19 0.83 0.45 1.19 0.85
11 1.13 1.23 0.53 1.13 1.22

(a) Only motion 9 is used for calibrating parameters of the noninear
soil model for all analyses.
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Figure 6.115: Relative RMSE for motion #03.
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Figure 6.116: Relative RMSE for motion #04.
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Figure 6.117: Relative RMSE for motion #05.
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Figure 6.118: Relative RMSE for motion #06.
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Figure 6.119: Relative RMSE for motion #07.

R
e
la

ti
v
e
 R

M
S

E
 (

%
)

0

50

100

150

AA1

AD18

AF28

AC16

AE26

AFH30

7

1 BT1

BL7

BB16

BL17

16

14

A11

A2

A5

A8

A23
A14

A17 A20

Soil Rectangular Structure Circular Structure

Figure 6.120: Relative RMSE for motion #08.
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Figure 6.121: Relative RMSE for motion #09.
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Figure 6.122: Relative RMSE for motion #10.
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Figure 6.123: Relative RMSE for motion #11.
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Chapter 7

Conclusions & recommendations

Details of the centrifuge experiments and data processing were provided in Chapters 2 and
3. Details of the NCHRP 611 method of analysis and comparison of predictions from these
methods with test data were provided in Chapters 4 and 5. Finally, details of the numerical
(i.e., finite element) modeling approach and its results against test data were provided in
Chapter 6. In the following two sections the main findings and conclusions from these
comparisons are presented along with potential caveats, and recommendations are made
for future work.

7.1 Conclusions & Recommendations

NCHRP 611 Method : In this method, choosing a proper value for the maximum shear
strain, which controls the seismic demand, plays the most critical role in the prediction of
critical structural responses.

When we used the iterative procedure described in Chapter 5 to estimate the maximum
shear strain, the bending strains in both the rectangular and circular culverts were over-
predicted (see, Table 5.6). The predicted values for the rectangular box ranged from being
2.17 times (for a low amplitude motion) to 4.50 times (for a high amplitude motion) the
measured value. The situation was better for the circular culvert, with predicted values
being 1.29 times (for a medium amplitude motion) to 2.85 times (for a high amplitude
motion) the measured values. These appeared to be severe inaccuracies for the NCHRP
611 method in predicting the bending strains.

The hoop strains in the circular culvert computed using the same method were generally
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under-predicted1, which was the case even when the NCHRP 611-recommended no-slip
condition was used for computing the soil thrust—an option that provides higher values
than the full-slip condition. The predicted hoop strains were as low as 0.48 times (for a
high amplitude motion) and as high as 1.11 times (for a medium amplitude motion) the
measured values.

The NCHRP 611 report recommends the use of more refined approaches—namely, one-
dimensional site response analyses—to obtain better estimates of the maximum shear strain
at the elevation of the culvert structures. As seen in Table 5.6, the use of this more refined
approach resulted in improvement of the bending strain estimates for both structures, but
further deterioration of the hoop strains for the circular culvert. The bending strains for
the rectangular culvert were generally underestimated for the low and medium amplitude
motions, and were generally overestimated for the high amplitude motions. That said, the
NCHRP 611 method produced its best results for the latter (i.e., high amplitude motion)
case, for which the bending strains were 1.15, 1.03, and 0.99 times the measured values
for the three high amplitude base excitations. Unfortunately, while the bending strain
estimate improved for the circular culvert, the hoop strains have deteriorated, which had
considerable magnitudes.

Given these results, it can be concluded that using one-dimensional site response analysis
in predicting the maximum shear strain should be preferred over obtaining this value (iter-
atively) from the modulus reduction curves, when using the NCHRP 611 methods.

Between the two structures, it was observed that the NCHRP 611 methods were more
successful in capturing the relatively stiff structure’s (i.e., the rectangular culvert’s) re-
sponses than the flexible (circular) one. That said, it was observed that the NCHRP
611 method generally under-predicted the bending strains (especially for low and medium
amplitude motions). For the circular structure, both the bending and hoop strains were
under-predicted in general for all base excitations; and the worst cases of these inaccuracies
were encountered for the high-amplitude base excitations.

Another important response measure considered was the von Mises stresses, which is a typi-
cal quantity used in strength-based design. The von Mises stresses (see Table 5.5) exhibited
trends that were similar to the strains. Namely, (i) they were more accurate when obtained
using the one-dimensional site response analyses; (ii) they were more accurate for the stiff
(i.e., rectangular) structure than they were for the flexible (circular) one. It appeared that
for most cases, the von Mises stresses obtained using the refined NCHRP approach provided
adequate estimates, as the NCHRP-to-experiment ratios von Mises stresses ranged between
0.7 to 1.2. This implies that a strength-based design would require a safety factor of at
least 1/0.7 ≈ 1.43 just to handle uncertainties in input motions and the model features
related to ground motions—henceforth collectively referred to as epistemic uncertainties.

1The analogous (hoop) strains for the rectangular culvert were negligible in all experiments.

137



On the other hand, the same ratios were bracketed from 0.4 to 1.5 for the circular culvert,
implying an factor of safety of 2.5, which is quite large.

Given these observations, it appears that the use of NCHRP 611 methods of analysis on
flexible structures may not produce adequately safe designs. It is likely that the situa-
tion will be worse for structures with higher relative flexibility and for higher amplitude
motions.

On the other hand, predictions obtained using the refined NCHRP approach for rigid cul-
verts appear acceptable. It should be noted here that the use of the refined NCHRP
approach requires one-dimensional site response analyses for every ground motion consid-
ered.

Finite Element (FE) Approach: Comparison of the numerical and experimental results
showed that by using only a few sets of recorded free-field accelerations to calibrate the soil
constitutive relationship, the finite element model was more systematically successful in
predicting the key response parameters of both culvert specimens compared to the NCHRP
611 methods (see, §6.1, for details). As shown in Table 6.1, for both the rectangular and
circular structures, the bending strain ratios are closer to one compared to those computed
using the NCHRP methods. For the hoop strain, on the other hand, using the finite element
approach resulted in ratios that are closer to those obtained using the NCHRP iterative
method for the low amplitude motions, and closer to those obtained using the NCHRP
refined approach for the moderate and high amplitude motions. As such, it is concluded
that the finite element approach performed better in predicting bending strains regardless
of the structure flexibility, while its accuracy in capturing the hoop strains decreased for
cases in which the soil behaves more nonlinearly.

For the rigid (rectangular) culvert the ratio of predicted-to-experimental von Mises stresses
ranged from 0.77 to 1.19, implying an epistemic factor of safety of 1/0.77 ≈ 1.30 (as
compared to 1.43 for the refined NCHRP method). For the circular culvert, the same
ratio ranged from 0.59 to 1.29, implying an epistemic factor of safety of 1/0.59 ≈ 1.70 (as
compared to 2.5 for the refined NCHRP method). As such, it can be concluded that the
FE method can handle rigid as well as flexible culverts equally well, and generally better
than the NCHRP method.

It is also important to note that the soil model in the FE calculations was calibrated
only once, using the centrifuge free-field array records during motion #9. It is, therefore,
reasonable to expect that the FE model predictions could be made better overall, if its soil
model was calibrated using free-field motions from multiple tests.

138



7.2 Caveats & Recommended Future Studies

In this report, the focus was to investigate the predictive capabilities of the “NCHRP 611”
method as well as a direct numerical (i.e., a finite element) model in capturing the key
response parameters of two rectangular and circular culvert structures subject to earth-
quake base shakings, by considering the results of the centrifuge experiments as the “true”
response. This study suggest the following steps need to be taken in order to gain better
insights on the predictive capabilities of the aforementioned methodologies.

1. Due to technical difficulties of sensors calibration, especially the strain bridges, the
nominal sensitivity factors were used in signal processing. This is likely the primary
source of various existing discrepancies reported in Chapters 5 and 6. It would be
informative to explore the possibility of using an advanced (e.g., a machine-learning)
algorithm to identify and exclude this source of measurement error from centrifuge
data.

2. As it was observed that the accuracy of the NCHRP 611 method depended critically
on the estimation of the maximum shear strain, it appears important to improve the
models that predict this quantity. For example, future studies could be directed to
improving Eq. 4.1 and Eq. 1. These equations yield the peak shear strain estimate,
based on peak ground acceleration and its assumed variation with respect to depth.
It may be possible to improve these predictions with more sophisticated methods of
wave propagation and soil domains models.

3. Two main ingredients for the calibration of the soil model in this study has been
the maximum shear modulus and the modulus reduction curves. Moreover, the soil-
structure interface is modeled by using an interface element with a nominally chosen
friction coefficient. It would be useful to perform numerical analyses to determine
how sensitive the key response parameters are to variations in the numerical model
parameters. The same study should be carried out on the NCHRP 611 method. Such
a study would enable identification of the most influential parameters, and therefore
to systematically improve the NCHRP 611 methodology as well as the numerical
modeling approach.

4. Only earthquake base shakings were studied in this report. In order to have better un-
derstanding on behavior of the culvert structures over the wider range of frequencies,
the sine-sweep and stepped-sine data should be studied in similar fashion.

5. Only two culvert structures were examined numerically. It is possible to use the FE
model calibrated (and subsequently validated) here, to perform parametric studies
using a broad range of ground motions, soil properties, structural geometries and
properties to bracket that acceptable range of applicability of the NCHRP 611 method
and to possibly improve it for flexible structure, by adding higher modes to it. This

139



appears especially important for tunnels, which will exhibit far higher flexibilities
than the average culvert structure.

6. It appears possible to develop a FE-based analysis and design tool for culvert struc-
tures, which could take basic inputs from the user and can compute responses for
any culvert geometry, soil profiles and properties, under any free-field motion. Given
recent advances in cloud computing, such a tool would provide efficient aid to the
design engineer.

7. The present study focused primarily on the dynamic responses of culverts. As cen-
trifuge testing is well known to be unsuitable in general to obtain static (or quasi-
static) behaviors from soil-structure specimens. As such, it is recommended to carry
out field tests and use data from instrumented culverts in the field to examine static
earth pressures that develop around them.
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