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ABSTRACT

The cost of modelling existing industrial facilities currently counteracts the benefits these models provide. 90%
of the modelling cost is spent on converting point cloud data to 3D models due to the sheer number of Industrial
Objects (I0s) of each plant. Hence, cost reduction is only possible by automating modelling. However, auto-
matically classifying millions of IOs is a very hard classification problem due to the very large number of classes
and the strong similarities between them. This paper tackles this challenge by (1) discovering the most frequent
10s and (2) measuring the man-hours required for modelling them in a state of the art software, EdgeWise. This
allows to measure (a) the Total Labor Hours (TLH) spent per object type and (b) the performance of EdgeWise.
We discovered that pipes, electrical conduit and circular hollow sections require 80% of the TLH needed to build
the plant model. We showed that EdgeWise achieves cylinder detection with 75% recall and 62% precision. This
paper is the first to discover the most laborious to model I0s and the first to evaluate state-of-the-art industrial
modelling software. These findings help in better understanding the problem and serve as the foundation for

researchers who are interested in solving it.

1. Introduction

“As-Is” Building Information Models (AI-BIMs) are the 3D digital
representation of the existing condition of facilities and encompass
geometric definitions at different levels of aggregation and parametric
rules [1]. The clear majority of large refineries were built before the
advent of CAD in 1977: as-is models, therefore, do not exist to assist
their maintenance operations [2,3]. AI-BIMs of industrial plants have
substantial impact in various applications. Some of these include
maintenance, strategic planning of their operations, revamping pur-
poses, retrofitting of old sites and preparation for dismantling [4-7].

Inexistence of AI-BIMs will result in time lags for these operations.
This is crucial for industrial managers, since without detailed planning,
productivity will be substantially affected, and the agreed budget and
timeline expectations will not be met. Moreover, there are thresholds
on the acceptable shut down duration that will not impede production,
and those limits cannot be violated without incurring extra costs. For
instance, Sanders [45] reported that 40% of the total 3D modelling cost
of retrofitting a Chevron plant was spent on data-processing labor and
the shut-down time was limited to 72 h to avoid additional costs. Every
modelling hour saved can prevent critical failures or unexpected acci-
dents, thus continuous production flow of these assets is achieved. This
work aims to assist the tedious current practice in this regard.

* Corresponding author.

Modelers use the following four main steps to manually process Al-
BIMs: (a) data collection, (b) point cloud registration, (c) geometric
modelling and (d) addition of accompanying information. Initially, data
is collected using laser scanners and photogrammetry, which are re-
presented by their Cartesian or polar coordinates, the point cloud, and
in some cases by their color data (RGB). The scans need to be registered
in a consistent coordinate system by calculating inter-scan rigid body
transformations and the registered point cloud represents the complete
measured data. Then this data needs to be geometrically modelled.

Geometric modelling entails (a) primitive shape detection, (b) se-
mantic classification of detected shapes and (c) fitting. Firstly, primitive
shapes are detected (e.g., cylinders, tori, planes) and classified (e.g.,
pipes, elbows, I-beams). Afterwards, the primitives are fitted to known
solid shapes to obtain their geometric parameters. Their relationships to
other objects need to be obtained in order to produce a complete Al-
BIM in the Industry Foundation Schema (IFC) format. The IFC schema is
a software-agnostic platform that allows geometric, material and other
construction related information to coexist in a single model.

Geometric modelling is the “bottleneck” during the Scan-to-BIM
modelling process of any industrial facility given how costly and time
consuming it is. Recent studies have reported that geometric processing
takes 90% of the modelling time [8,9]. Hullo et al. [9] reported that 10
operators were needed to process 1084 scans of a nuclear reactor and
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model its objects in around 6 months using Dassault Systems Solid-
Works and Trimble Realworks. In contrast, laser scanning of the plant
was completed in only 35 days. This significant time required to model
the large number of industrial objects impedes adoption of as-is 3D
modelling for these plants.

The research presented in this paper is exploratory in nature, not
causal. It does not seek to solve the problem of automating the modelling
of industrial facilities. It rather seeks to improve our understanding of the
problem and the extent to which it has been resolved so far and provide a
foundation for future researchers interested in solving it. This is why the
main objective of this paper is to identify the most important industrial
object types given how frequent and laborious they are for modelling, as
well as to measure the performance of existing tools in modelling these
particular object types. The authors identified the most frequent objects
based on a frequency-based, statistical analysis of 3D modelled industrial
objects in a variety of industrial plants. The most frequent objects were
then modelled in the state-of-the-art, semi-automated modelling soft-
ware, EdgeWise, and their modelling time was measured. Finally, the
most important industrial object types were ranked based on their fre-
quency of appearance and average modelling time. This analysis will
substantially assist automated modelling efforts to efficiently reduce
modelling time and facilitate facility management.

2. Background

Industrial plants can be divided into fifteen main categories [10]:
(a) onshore and (b) offshore oil platforms, (c) chemical, (d) mining, (e)
pharmaceutical plants, (f) power plants, (g) water and wastewater
treatment facilities, (h) natural gas processing and biochemical plants,
(i) refineries, (j) food processing factories, (k) defense facilities, (1)
metal production facilities, (m) nuclear plants, (n) research facilities
and (o) warehouses and silos. The object types of industrial facilities
belong to the main object categories: (a) structural elements, (b) piping
system, (c) electrical, (d) safety and (e) general equipment, (f) archi-
tectural elements, (g) instrumentation, (h) Heating, Ventilation and Air
Conditioning (HVAC) and (i) civil elements. Representative examples of
structural elements include barricades, catwalks, mod pilings, steel
platforms, stairs, pipe racks, supports and structural steel elements.
Respectively, examples of safety equipment include deluge systems,
cameras, fire extinguishers, fire aid stations and fire detectors. General
equipment includes lifting mechanisms, pumps, compressors, tanks,
turbines, vessels, degassers, air coolers, drainers, water heat recovery
units and exchangers. Civil elements include curbing, foundations and
bollards. Examples of architectural elements are windows, slabs and
walls. Instrumentation includes sensors (temperature, pressure, etc.)
and controllers. Indicative examples of electrical equipment are cable
trays, conduit, electrical panels, power outlets and lights.

2.1. Value of modelling industrial object types

Petitjean [11] prove that 85% of objects in industrial scenes can be
approximated by planes, spheres, cones and cylinders. These primitive
shapes, however, have not been assigned to specific industrial object
types. The value of modelling those is measured in terms of safety,
maintenance and retrofitting [12]. AI-BIMs for industrial plants have
significant value for facility managers since these models assist them to
be proactive in decision making that involves maintenance, operations
and health and safety. Recent studies of the Chartered Institute of
Building [13] have shown that the need for refurbishing and retrofitting
93% of existing industrial facilities will be a major focus in the U.K.
construction industry by 2050. As a result, modelling these assets using
digitization technologies is an imperative need.

Extensive research has been conducted to identify critical industrial
objects under the above-mentioned values of modelling [14-20]. Sus-
ceptibility to failure is measured based on failure rate metrics. The
nominal mean failure rate (1) is the frequency that an industrial object
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type or object component fails and is usually expressed in failures per
year [17]. The sample data for electrical component failures can be
combined from different data sources and calculation of a mean failure
rate is reasonable. Moss and Strutt [17] list several factors that affect
the mean failure rate of mechanical components in industrial facilities.
These factors depict the design, the size of equipment, environmental
conditions and level of operation compared to the mechanical capacity
of an object [17]. For example, outdoor facilities that are affected by
more challenging weather conditions tend to be more prone to rust. The
same paper specifies factors calculated to modify the standardized life
of a component given those factors. Particularly for chemical plants and
offshore platforms, these factors increase the nominal mean failure
rates of mechanical components due to environmental conditions and
heavy equipment operation compared to average industrial conditions.
Steel sections are also critical for fatigue and fire, dependent on the load
imposed and welding [14,15].

The criticality of industrial object types is then defined as the like-
lihood of failure multiplied by the consequence of failure for an industrial
object or a process line of a plant [19]. There are three methods in lit-
erature used to evaluate the hazards and assess the consequences of ac-
cidents for a plant. These are HAzard and OPerability (HAZOP), Failure
Mode and Effect Analysis (FMEA) [16] and Fault Tree Analysis (FTA)
[18]. What is missing, though, is a justified study on which critical ob-
jects should be modelled for maintenance, safety or retrofit purposes.

Examples of critical object types that should be considered are given
below. Hazardous subsystems should be modelled in finer detail for
safety purposes. Highly hazardous object types are separators, com-
pressors, driers and flash drums, whereas moderately hazardous ones
are pipelines and pumps [20]. The identification of hazardous equip-
ment elements will remarkably improve safety management.

Valves are a final control element in nearly all chemical process
control loops and regulate the flow through piping systems. Failure to
quickly locate and identify control and safety valves during inspection
can result in significant damages or even massive, unprecedented dis-
asters such as Texas City Refinery [21] or Piper Alpha [22]. Safety
system deficiencies that occurred due to poor inspection and in-
adequate maintenance are reported as some of the main factors of the
devastating incidents mentioned above.

Another important control measure in industrial facilities is main-
tenance of pipelines and pipe supports. Insulated pipes and pipelines
carrying flammable, hazardous or toxic materials are highly important
for inspection. One of the most important concerns of inspectors for
maintenance of pipelines is corrosion. Pipes of Nominal Bore
(NB) > 2in. (50 mm) are considered critical for corrosion [23].

Structural steelwork and equipment are also vital for the structural
stability of the plant and oil and gas production especially in cases of
fire. Given the short lifecycles of refineries, which range from 15 to
30 years, structural design is challenging since the layout should be
flexible and expandable [24]. Seismic and energy refurbishments for
pipes are typical retrofitting operations in industrial plants [25]. Al-
BIMs can significantly assist these operations, should accurate as-is
models of these objects be created.

Table 1 summarizes the critical elements for each category (main-
tenance, safety and retrofit) based on their failure rates A, (high,
medium and lower impact) based on Umar [20] and Keeley et al. [26].
These values are calculated for major accidents that involve dangerous
substances and cause serious damage/harm to people and/or the en-
vironment. The piping system is generally subdivided in two mean-
ingful subgroups with respect to their Outer Diameter (OD). Small bore
pipes are the pipes whose OD is less than or equal to 2in. (50.8 mm)
and the rest (pipes with OD > 2in.) are considered large bore pipes.
Table 1 shows that small bore pipelines are considered to have higher
impact than large bore. Some categories listed in Table 1 are critical but
not frequent. For this reason, they do not appear in Tables 3-5.

The critical industrial object types have been investigated in the
literature. However, those that need automated modelling due to
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Table 1
Critical object type list for facility management in terms of value for modelling.
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Value for modelling  High impact

Ao = 1074 yr’1

Medium impact
(10 5<A=<10"%Hyr!

Lower impact
Mo<10"%yr !

Maintenance Valves

Safety Separators, reciprocating compressors, driers & flash
drums, valves, large vessels, tanks, electrical conduit,
circuit breakers

Retrofit -

Small bore straight pipes
3 mm diameter straight pipes, pumps,
reciprocating compressors

3 mm diameter straight pipes

Large bore straight pipes

4 mm diameter straight pipes, 25 mm diameter
straight pipes, 33 mm diameter straight pipes,
pressure & spherical vessels

4 mm diameter straight pipes, 25 mm diameter
straight pipes, 33 mm diameter straight pipes

increased modelling time and frequency of appearance have not been
identified. If an object type is critical but not frequent, there is no need
to automatically model it. On the other hand, even if an object is va-
luable for modelling but is not frequent, this paper does not consider it
for automated modelling. The primary condition that the industrial
objects should meet in order to be considered for automated modelling
is being in the priority list based on their frequency of appearance.

2.2. Frequency based studies

There is no substantive study that prioritizes industrial objects
based on their frequency of appearance as explained in Section 2.1,
however there are related fields where object importance is considered
for object classification [27,28]. SceneParse150 [28] is an image da-
taset, part of ADE20K, used for image classification that contains the
eight most frequent object classes (‘person’, ‘building’, ‘car’, ‘chair’,
‘table’, ‘sofa’, ‘bed’, ‘lamp’) and 150 objects in these classes found in a
variety of everyday scenes. The uniqueness of this dataset compared to
other benchmark datasets, such as ImageNet [29] and Pascal [30], is
that the distribution of objects that appear in the selected images is
diverse, which mimics object occurrences in daily scenes. This dataset,
however, is limited to everyday scenes and not extended to industrial
facilities. Therefore, the statistics of most frequent object types in in-
dustrial scenes are not determined. As such, the identification of the
most frequent object types in industrial plants facilitates the application
of multi-classifiers and makes a difficult multi-classification problem
solvable. Then, the researchers can focus their detection efforts on the
most frequent object categories that take most of the manual labor time,
so that users manually model those that take less modelling time. Ap-
plication of the results of the frequency based studies will guide re-
searchers on automatically detecting and classifying these objects in
industrial scenes. A training library of the object classes that are critical
for industrial facility operations, frequent in industrial plants and la-
borious to model will assist the implementation of multi-classifiers for
automated modelling of these classes.

2.3. Automated industrial plant modelling

2.3.1. State-of-the-art software

The next challenge for plant modelling is that almost all available
modelling tools depend on human intervention for most of the modelling
tasks. Leading 3D CAD software (Autodesk, Bentley, AVEVA and FARO)
have developed programs containing a variety of functions that enable
pipe modelling from 3D point clouds. Automated detection has been
achieved by a limited number of software packages. For example,
AutoCAD Plant 3D accompanied with FARO's PointSense Plant add-in
enables semi-automated pipe modelling from Point Clouds. PointSense
Plant provides several functions and a large standard library with a
variety of piping and structural components available for the detection of
pipelines from 3D point clouds. Moreover, fitting template objects to
scanned 3D objects is performed automatically and constraints can be
applied to fix potential errors of fitting. PointSense Plant 17.5 has in-
tegrated a pre-calculation tool that detects cylinders in the point cloud of
a specific area and has the ability to colorise the Point Cloud by deviation
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from reference geometry [31]. However, the users still manually model
the as-is pipelines by finding the insertion points for fitting CAD objects
to the segmented 3D point clouds and fitting errors of the extracted cy-
linders are not provided. The “Walk the Run” feature is rather a sugges-
tion for pipe insertion points than an automated pipe modelling tool.
EdgeWise is another semi-automated platform that is extensively
used. The main difference of Pointsense and EdgeWise is that a modeler
using the former should manually extract the desired boundaries of an
object and afterwards the software will automatically extract the cor-
rect dimensions and location. However, this procedure is automatically
performed by EdgeWise, that is why it was chosen as the most suitable
tool for evaluation of the most frequent industrial object types that will
be presented in Section 3.4. Structural sections are manually modelled
in all available software packages. Fitting of user-selected primitives
(e.g., circular hollow sections, cuboids, tori etc.) is performed auto-
matically by both EdgeWise and PointSense Plant. To date, no one has
provided viable and accurate assessments of state-of-the-art tools.

2.3.2. State-of-research

State-of-the-art research work on pipe detection has partially solved
the problem and not to a greater extent compared to commercially
available software like EdgeWise [32-34]. For instance, Ahmed et al.
[32] only detect pipes in orthogonal directions. A recent study com-
pleted by Patil et al. [33] is dependent on threshold values for radius
and normal estimation. The pipe radius range is 0.0254 m-0.762 m and
the normal deviation is 5°. Therefore, Patil et al.'s study cannot be
generalized for pipe detection. Their updated Hough Transform based
on Rabbani et al. [5] detects pipes in two sample datasets with 60%
recall and 89% precision. Sharif et al. [34] proposed a model-based
cylindrical and structural object detection by matching features of the
acquired point cloud data with those of library generated point cloud
models. However, the experiments are limited to a small-scale pipe
spool and a structural frame.

Prior knowledge of industrial scenes has assisted researchers to
detect industrial objects. Son et al. [6] used prior knowledge (Piping
and Instrumentation Diagram, P&ID) to detect Mechanical, Electrical
and Plumbing equipment (MEP). However, as-is P&IDs are often not
available as prior knowledge in industrial plants, thus they do not re-
flect the modifications a plant undergoes through its life. For this
reason, prior knowledge cannot rely on P&IDs. Perez-Gallardo et al.
[35] used topological information to extract semantic labels for four
object classes: pipes, planes, elbows and valves. They detect cylinders
with 86% precision and 92% recall. However, their semantic labels
consider that all cylindrical objects are pipes, without investigating
other potential object classes with the same shape.

3. Research methodology
3.1. Gaps in knowledge and research questions

Considering the state of practice and body of research reviewed
above, existing studies for as-is modelling of industrial plants have
primarily focused on automated detection of cylindrical objects and no
scientific and viable evaluation of existing state-of-the-art software
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Fig. 1. Research methodology.

tools is provided. Critical industrial object types have been identified in
the literature based on their value for modelling, but no scientific study
investigates modelling those. It is therefore still unclear (1) which in-
dustrial object types are important for automated modelling, (2) how
long it takes to model those in state of the art software and (3) the level
of automation achieved with state of the art software.

The aim of this work is to solve the gaps in knowledge by answering
the following research questions:

a) What are the most important industrial object types in terms of
value for modelling, frequency of appearance and modelling time?

b) What is the time required for modelling the most frequent object
types in state-of-the-art software?

c) How can state-of-the-art as-is modelling tools be assessed in terms of
automated detection of objects achieved?

The research conducted in this paper is exploratory in nature and
follows the methodology framework depicted in Fig. 1. We analyzed the
counts of 3D modelled industrial objects obtained from as-designed
BIMs by hierarchically ordering those based on their average frequency
of appearance in sample case studies. The most frequent object types
were then modelled in EdgeWise to measure the modelling time of each
type. We determined a list of the most important object types as those
being most frequent and most laborious to model. The time required for
manual modelling of cylindrical objects was then compared with that
measured in EdgeWise.

3.2. Data collection and assumptions

Five case studies of 3D modelled industrial facilities were examined
to find a statistically representative sample of object types in industrial
facilities. Three case studies were offshore platforms, one was a pet-
rochemical plant and the fifth was a food processing refinery (sugar
refinery). The subcategories of offshore platforms that were examined
in this study are (a) a Gravity-Based Structure (GBS), (b) a Tension-Leg
Platform (TLP) and (c) a fixed platform. These facilities are anonymized
since rights are reserved by AVEVA Group plc. and British Petroleum
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(BP). The total number of objects in the sugar refinery and petro-
chemical plant is 22,143 and 240,687 objects respectively. The GBS,
TLP and fixed platform have 577,237, 434,780 and 34,089 objects re-
spectively.

An assumption was made for electrical, safety equipment, HVAC
and civil categories of the offshore platforms and sugar refinery due to
unavailability of data. This assumption for electrical and HVAC cate-
gories is reasonable, since the pipe network and fittings can be simu-
lated with conduit and valves/flanges. The percentages of these cate-
gories for the petrochemical plant were used to calculate the respective
percentages in the other case studies presented. For instance, in the case
of electrical equipment, around 27% of the total objects in the petro-
chemical plant was assumed to be present in the tension-leg platform,
which has 289,943 objects in structural, piping system, equipment,
architectural and instrumentation categories. These categories re-
present 67% of the total objects in the facility, which are 434,780 in
this case, assuming that safety objects constitute around 6%, HVAC
0.6% and Civil 0.05%. The same concept is applied to identify the
object counts in the other missing categories of the case studies.

This study is not seeking to find the statistics of industrial object
categories and object types by decimal accuracy. It rather proposes the
most frequent object categories and object types that need to be
prioritized for automated modelling. For this purpose, the datasets were
chosen to represent different types of facilities with total number of
objects that differs by orders of magnitude. As such, it is legitimate to
assume that the ranking of object categories would not be substantially
different if additional facilities were assessed.

The safety equipment (deluge systems, cameras, fire extinguishers,
fire aid stations and fire detectors), civil elements (curbing, founda-
tions, bollards) and HVAC were not modelled in the majority of the as-
designed BIM models that we investigated (four out of five as-designed
models as described above). Safety equipment, civil elements and
HVAC are approximately 6% of the total number of objects in the
petrochemical plant and this assumption was adopted for the other
datasets as well.

Electrical equipment is substantial when modelled (27% of the total
number of modelled industrial objects in the petrochemical plant). We
observed the correlation between the average frequency of appearance
and the total number of objects in the categories where the statistics
were available for all the investigated case studies. A sensitivity ana-
lysis on the total number of industrial objects that a plant can have, is
conducted to observe the range of percentages for each object category.
Fig. 2 shows the average curves on the data available from the counts of
as-designed BIM models of industrial plants.

The results shown in Fig. 2 indicate that the prioritization of the
object categories does not change with the increase in the total number
of objects. As such, it is reasonable to assume that when electrical
equipment is modelled, its hierarchical order compared to the other
categories will not change between facilities. For cases where modelers
ignore modelling electrical equipment, this does not indicate absence of
electrical equipment in the existing industrial plant.

The range of total number of objects is defined based on the existing
datasets (1.5 % 106 10° objects). The average frequency of appear-
ance based on our data is a linear function for object categories shown
in Fig. 2, object types of the pipe system and structural elements in
Fig. 3(a) and (b). Equipment, architectural elements and instrumenta-
tion are < 5% in all case studies.

These observations substantiate the assumptions for the average
frequencies of the categories with unknown data, since the average
frequency of appearance is invariant to changes in the priority list of
objects. This means that the prioritization of object categories does not
change with the increase in total number of objects except the piping
system and structural elements. These two categories overlap at
240,200 objects and their hierarchical order is reversed for greater
number of objects above this threshold. We observe that piping ele-
ments and structural elements vary from 20 to 40%, given our data. The
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Fig. 2. Estimated frequency of appearance (%) of industrial object categories
with respect to the total number of objects in the five case studies of industrial
plants.

variance in frequency of appearance is justifiable given that the varia-
bility in the total number of objects is more than one order of magni-
tude. The correlation between the total number of objects and the
prioritization of object categories is not significant despite the variance
in frequency. This means that the hierarchical order of the most fre-
quent object types does not change with the change in total number of
industrial objects with the exception of piping and structural elements
as explained.

No correlation between the size of the plant and the frequency of
appearance is observed. There is no clear definition of the size of a plant
compared to its total number of objects. The results on object categories
show a decreasing trend with increasing total number of objects, except
structural elements that have an increasing trend. The same trend is
observed for all object types other than solid bars and I-beams, whose
average frequency increases with the total number of objects.
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3.3. Most frequent industrial object categories

The object categories that need to be modelled are determined by
implementing a statistical analysis on the frequency of appearance of all
object categories encountered in typical industrial plants. The fre-
quency of appearance is calculated by dividing the total counts of each
object category (n; = S;, P;, E; etc. dependent on the category) with the
total number of objects of the same object category in all case studies
(N;). The total counts of each object category were calculated by run-
ning a Programmable Macro Language (PML) script in 3D models de-
signed in Everything 3D [36] software. The pseudocode of this script is
shown in Algorithm 1 for finding the counts of 3D modelled pipes,
structural elements and equipment. The counts of the rest of the object
types are calculated in the same manner. The pipe length corresponds
to the length of the pre-fabricated pipe spools that are manufactured
offsite and are supplied in the following cut lengths: single random and
double random [37]. The former is usually 16-20ft on average,
whereas the latter comes in lengths of 35-40 ft on average [37,38].

Algorithm 1. Pseudocode used to obtain number of objects from 3D
modelled industrial plants.

Input: 3D modelled elements (pipes, structural and equipment) {P, S, E}

Output: Number of pipes {Pi} for each bore, number of structural elements {S;} for each type,
total number of equipment {E;}

For each pipe P

- Traverse the pipelines and store each pipe length Li, where L; represents the length
of each pipe spool
- Collate the total number of pipe spools on each element type of pipe bore P;

End For
For each structural element S

- Determine the structural element profile S;
- Calculate the structural element length and store for each profile type SLi

End For
For each equipment element E

- List the element description Eiand store for each element

Frequency of appearance (%)

0.00E+00  2.00E+05

End For
30
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Fig. 3. (a) & (b) Estimated frequencies of appearance (%) of industrial object types with respect to the total number of objects in the five case studies of industrial

plants.
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Subsequently, the most frequent object types of these categories are
presented. The standard error of each object category between the five
case studies using the inter-project standard error (S.E.) is given below
[39]:

-
| 5
| 1-
S.EBig=z 3 0P
k=1 3

(€Y

where k € [1;5] for each individual case study, p is the probability of
appearance of each object category in case study k, ny is the number of
objects in each category and z is the Z-score corresponding to the
confidence level of a Gaussian distribution.

The object category rankings are calculated in descending order for
all case studies in Table 2. Structural elements are most frequent in all
case studies with an average frequency of around 33%. The piping
system and electrical equipment follow in percentages being 28 and
27% respectively. These statistics are important since most software
packages and research methods are designed to automate only the
modelling of pipelines, electrical conduit and Circular Hollow Sections
(CHSs), which are all cylindrical objects. Each object category follows a
binomial distribution where N is the total number of objects in all in-
dependent object categories existing in our case studies (1,308,936 in
all five projects) and p; the probability of appearance of the specific
object category i. A binomial distribution can be approximated to a
Gaussian distribution if the following conditions are met [40]:

N; > 30 2
Nip, > 5 3)
NQA-p)>5 (@)

The results show that all conditions are met for every object cate-
gory, thus the approximation to a Gaussian distribution is valid. The
sample size of the binomial distribution of each object category, the
standard deviation and standard error of the sample mean are also
presented in Table 2. The sample size of the object category i is defined
as [39]:

n; = Nip; ()

where p; is the frequency of appearance of the object category i € [1;9],
since there are nine independent object categories for each case study.

The standard deviation and standard error of each object category i
are calculated using the equations for a binomial distribution ([39,46):

o= Np,1 - p) 6
S.E; =%
T Um @

The standard error estimates the standard deviation of the sample
mean based on the population mean. This definition implies the sample
follows a Gaussian distribution [39] as proved above. The standard

Table 2
Priority list of object categories for all case studies.

Object category  Frequency of Sample Standard Standard error
appearance size (n) deviation (95%
(average) (%) (average) confidence
level)
Structural 33.40 437,530 540 0.92
Piping 28.20 368,428 515 0.88
Electrical 26.90 352,170 507 0.87
Safety 5.70 74,860 266 0.46
Equipment 2.80 36,310 188 0.32
Architectural 2.00 24,557 160 0.27
HVAC 0.60 8431 81 0.14
Instrumentation  0.50 6066 88 0.15
Civil 0.04 584 21 0.04
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deviation for the structural category is 540 objects, meaning that there
is a higher variance from the mean of all projects (437,530 * 540
objects) compared to the other object categories, but is low compared to
the magnitude of the mean. The standard error with 95% confidence
level is low for all object categories, meaning that the sample mean is
close to the population mean (1,308,936 objects) for all object cate-
gories. For instance, if more samples of each object category are con-
sidered, there is 95% confidence level that the average frequency of
appearance will be the same as calculated herein. The inter-project
standard error, as shown in Table 2 is almost negligible for all object
categories implying that the variability of object counts between dif-
ferent case studies for the same object category is very low.

3.4. Most frequent industrial object types

The most frequent object categories being around 90% of all objects
modelled in these facilities are: structural elements, the piping system
and electrical equipment. The object types present in these categories
were further investigated. Tables 3, 4 and 5 show the priority list of
object types belonging to these categories with the same statistical
properties evaluated for the object categories.

The results show that Circular Hollow Sections (CHSs) are the most
frequent structural elements present in these studies with an average
percentage of around 19% (Table 3). They are one of the object types in
this category with highest standard deviation (261 objects) and inter-
project standard error (~1.8 10~ %), meaning that their distribution
among the five case studies is quite widespread from the sample mean
(84,688 objects) compared to the other object types. However, the
standard deviation is two scales of magnitude lower than the sample
size (n) meaning that the average frequency of appearance is invariant
to the sample size, and the samples are large enough to give accurate
results. Channel sections, solid bars and I-beams follow with approxi-
mately 14, 13.5 and 13% respectively.

The priority list of piping elements is also provided in Table 4.
Straight pipes are more than half of the total objects in this category
(52.1%) with a slightly higher standard deviation compared to struc-
tural elements (303 objects). Elbows and flanges follow with 19% and
12% respectively and lower standard deviations.

Electrical equipment is mostly comprised of conduit (90.2%) in the
petrochemical plant as shown in Table 5. An assumption was made that
the proportion of electrical equipment in each project will be the same
for all case studies as discussed above, thus the inter-project standard
error is zero.

The standard error with 95% confidence level for the electrical
equipment has the highest range compared to all the other categories,
indicating the different scale of total numbers of objects in the five case
studies investigated. The standard deviation of the sample considered is

Table 3
Priority list of objects for all case studies in structural element categories.
Structural Frequency of Sample Standard Standard Inter-project
object type  appearance size (n)  deviation error (95% standard
(average) (average) confidence error
(%) level)
CHS" 19.4 84,688 261 0.8 1.77 %1072
Channel 14.3 62,634 232 0.7 1.72%10°2
Solid bar 13.5 58,934 226 0.7 0.34%1072
I-beam 13.1 57,314 223 0.7 0.58%1072
Angle 11.9 51,886 214 0.6 1.2%1072
Others 10.8 47,273 205 0.6 0.98%1072
RHS" 9.2 40,439 192 0.6 0.2%1072
PFT¢ 7.5 32,699 174 0.5 0.28%1072
T-brace 0.4 1663 41 0.1 0.16%10°2

2 Circular Hollow Section (CHS).
b Rectangular Hollow Section (RHS).
¢ Parallel Flanged Tee (PFT).



E. Agapaki et al.

Table 4
Priority list of objects for all case studies in piping element categories.
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Table 6
Ranking of most frequent industrial object types of all object categories.

Piping Frequency of  Sample Standard Standard Inter-project
object appearance size (n) deviation error (95% standard
type (average) (%) confidence error
level)
Straight 52.1 192,081 303 1.0 1.56 %102
pipe
Elbow 19.3 70,945 239 0.8 1.25%1072
Flange 11.8 43,308 195 0.6 1.09x10~2
Tee & 6.1 22,460 145 0.5 0.81%10°2
Olet
Valve 5.6 20,591 139 0.4 0.76 %1072
Other 2.2 8137 89 0.3 0.18%10°2
Reducer 1.8 6570 80 0.3 0.36 %1072
Cap 1.2 4336 65 0.2 0.17 %1072
Table 5

Priority list of electrical object types for all case studies.

Electrical object  Frequency of Sample Standard Standard error
type appearance size (n) deviation (95%
(average) (%) confidence
level)
Conduit 90.2 317,572 177 29.8%1072
Cable tray 6.1 21,585 142 23.9%1072
Electrical panel 2.1 7397 85 14.3%1072
Lights 1.4 5009 70 11.8%1072
Miscellaneous 0.07 250 16 2.7%1072
Alarm 0.05 190 14 2.3%1072
Speaker 0.03 120 11 1.8%1072
Others 0.01 39 6 1.07 %1072
Power outlet 0.003 11 3 0531072

also low compared to the sample size in terms of order of magnitude, so
the average frequency of appearance is a reliable estimation.

This statistical analysis gives us the most frequent object types in
object categories that are among the most critical object types for
modelling industrial plants as shown in Table 1. According to the re-
sults, the most frequent categories are structural elements, the piping
system and electrical equipment. These categories represent around
90% of all objects in industrial facilities and the sample sizes for each
object category are large enough to give representative results. The
most frequent object types of these categories are in descending order:
electrical conduit, straight pipes, circular hollow sections, elbows,
channels, solid bars, I-beams, angles, flanges and valves. The results are
presented in Table 6. It is noteworthy that the rest of the object types
present in our datasets were < 1% of the total number of objects, thus
neglected from our analysis.

Fig. 4 shows a distribution of ranked object types with their corre-
sponding average frequencies for the five case studies investigated. The
distribution follows the Zipf's law [41] and is typically found in ev-
eryday scenes as explained in Section 2.2. This means that the average
number of industrial objects and their ranking are inversely propor-
tional. Therefore, the most frequent object category (electrical conduit)
will occur approximately twice compared to the second most frequent
category (straight pipes), three times as often as the third most frequent
category (CHSs) and so forth. The 10 rank-ordered object types can be
used for automated modelling. This industrial object repository can
then be the dataset used for training machine learning algorithms.
Automated modelling of those categories will significantly assist the
tedious modelers' work by efficiently reducing modelling time, whereas
modelers can intervene to a small subset of infrequent object types.

3.5. EdgeWise evaluation for pipeline modelling

Four sample point cloud datasets were used to evaluate the level of

Rank Most frequent object types Frequency of appearance (average) (%)
1 Electrical conduit 24.3
2 Straight pipes 14.7
3 CHSs" 6.5
4 Elbows 5.4
5 Channels 5.0
6 Solid bars 4.5
7 I-beams 4.4
8 Angles 4.0
9 Flanges 3.3
10 Valves 2.0

2 CHSs = Circular Hollow Sections.
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Fig. 4. Object types sorted by frequency of appearance in average number of
objects.

automation of EdgeWise and obtain modelling times for the most fre-
quent object types that were identified in Section 3.4. Fig. 5 shows the
sample datasets that were used for this evaluation. Two case studies are
rooms of an industrial facility, one was a water treatment facility in
Cambridge (U.K.) and the fourth was a room of a petrochemical plant.
The industrial and petrochemical plants are anonymized since rights
are reserved by AVEVA Group Plc. The water treatment facility in
Cambridge was laser scanned by the authors.

Pipeline modelling is significantly assisted by the automated ex-
traction of cylinders that EdgeWise provides. The scans were processed
on a desktop computer with CPU Intel® Core™ i7-4790 K at 4.00GHz,
32GB RAM and Windows 10 64-bit operating system. The average
processing time for this operation using the above-mentioned operating
system for the sample datasets is 3.3 * 10~ > min/(cylinder  points in
the point cloud), as shown in Table 9. The average number of points of
all datasets used is 258 million and the number of points of each dataset
is presented in Table 7. The average diameter of cylinders and pipes is
presented for evaluation purposes in Table 8.

We set the parameters used for cylinder extraction to a minimum of
80 points, in order to detect a pipe and provide a distance tolerance to
0.7 10~ 3m. The minimum threshold of the software is 50 points to
identify pipelines, however if we give a very low value, the automated
extraction tool will identify noisy and erroneous features as pipes. The
distance tolerance is a parameter that determines how far away from
the cylinder a 3D point can be, so that it is not excluded from the ex-
traction algorithms. The default value of 0.7 +10 3m is used here,
which was obtained from a scanner with a high level of accuracy and
low noise [42].
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Fig. 5. (i) Evaluated point cloud datasets and (ii) their corresponding sample pictures. (a), (b) Two rooms of a typical industrial facility, (c) water treatment plant and

(d) a room of a petrochemical plant.

Table 7
Total number of points in the point cloud datasets, cylinders and pipes in each
case study.

Typical Typical Water Petrochemical
facility facility facility plant
Room 1 Room 2
Total number
Points (millions) 129 105 122 675
Automatically 551 86 44 358
detected
cylinders
Manually detected 166 79 48 265
pipes
Table 8

Average diameter of cylinders and pipes for each dataset.

Typical facility — Typical facility =~ Water Petrochemical plant
Room 1 Room 2 facility
Average diameter (m)

Cylinder 0.067 0.076 0.315 0.095

Pipe 0.114 0.106 0.617 0.081

After the automated extraction step, the cylinders were inspected
and approved depending on the modeler's discretion. For cases where it
was difficult to identify the object, pictures taken from the laser scanner
were used to assist the inspection process. A user friendly “Smart Sheet”
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was produced, which contains information such as the length, diameter,
Root Mean Square Error (RMSE) and coverage (%) of each pipe spool.
The results show that although cylinders are automatically extracted,
no contextual information is provided. Henceforth, electrical conduit,
handrails, cylindrical pipe supports, vessels and other object types were
modelled as straight pipes.

The next step in the evaluation process was to edit the pipes and to
manually add missing ones (classification). Using the “Easy Connect”
tool pipe spools were connected, and tees and elbows were added in the
piping network. Then, labels were manually assigned for each cylinder
that was automatically extracted by the software and metrics were used
to evaluate the software's performance.

An additional step of cleaning the pipes and merging the connecting
spools together was performed to complete the pipeline system. This
step was completed automatically by the software. Then, standard
catalogues were used to get standardized pipe dimensions.

We chose the American Society of Mechanical Engineers' (ASME)
specifications and pressure rating of 150 psi. After this step, fittings,
such as flanges and valves, were applied on the standardized pipes.
There are different types of standard fittings that the user can select
from available standard libraries. Fitting is performed automatically,
once the user selects the boundaries of each object manually.

The modelling of pipelines is summarized in three basic steps: (a)
automated extraction of cylinders, (b) semantic classification of cylin-
ders and (c) manual extraction and editing of pipes. Fitting is performed
automatically for object extraction: therefore, it is not a separate step of
the procedure. The average time per cylinder or pipe for each step is
computed in our operating system in Table 9. The processing times for
steps (a), (b) and (c) are calculated as following:
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Table 9
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Modelling time of each modelling task for each dataset and average time per object (min/object).

Modelling task Typical facility Room 1

Typical facility Room 2

Water facility Petrochemical plant Average time (min)

Time (min)
Automated extraction of cylinders® 1.5%10°° 1.5%107° 7.1%10°3 1.4%107° 3.3%10°°
Semantic classification of cylinders” 0.20 0.47 0.17 0.12 0.24
Manual extraction & editing of pipes® 0.69 2.37 2.43 1.22 1.68

@ Per cylinder « point.
b Pper cylinder.
¢ Per pipe.

Table 10
Root Mean Square Error (RMSE) of the radius and coverage area (%) of auto-
matically detected cylinders in each dataset and their average values.

Automatically detected RMSE of the cylinder Coverage area (%)

cylinders in radius (m)

Typical facility - Room 1 1.7%107° 325
Typical facility - Room 2 6.7%1073 30.2
Water facility 1.9%1072 26.5
Petrochemical plant 4.2%1073 27.6
Average 3.6%1073 29.2

time/cylinder. point
time for automated extraction of cylinders

automatically detected cylinders:points in the dataset (8)
. . time for semantic classification of cylinders
time/cylinder = - -
automatically detected cylinders 9
. . time for manual extraction&editing of pipes
time/pipe = -
total number of pipes (10)

where the number of automatically detected cylinders and the total
number of pipes is shown in Table 7 for each case study. The latter is
the sum of automatically and manually detected pipes in each dataset.
These normalizations are used to compare the modelling times for each
case study, since the number of points and cylinders processed are
different for each dataset.

The time for semantic classification was 0.24 min per cylinder on
average. Manual extraction and editing of pipes was the most time-
intensive step, since we needed 1.68min per pipe on average to
manually add missing pipes and edit the existing ones. The observations
show that the manual effort to classify and extract pipes was 1.92 min
per cylinder on average, which is the summation of two subsequent
steps, (b) and (c). This is almost three times the time needed for au-
tomated extraction of cylinders by the software.

A variation of the time needed for automated extraction of cylinders
between the water facility and the other datasets is observed. This
discrepancy is attributed to the fact that the water facility is an outdoor
facility, requiring the most processing time compared to the other da-
tasets. Technically, outdoor scenes are inherently more occluded and
incomplete exhibiting extreme variations in point density [43]. These
effects are mitigated by the limited size and constrained shape of rooms.
The two rooms of the typical industrial facility were processed at the
same time in our operating system, for this reason the time required for
automated extraction is the same as shown in Table 9. Manual mod-
elling of the second room of this facility required the most modelling
time. This is due to cluttered pipelines, which resulted in the largest
Room Mean Square Error (RMSE) of the cylinder diameters, as shown in
Table 10. This clutter is attributed to the reflective surface of pipelines.
Manual extraction and editing of pipes in the water facility is another
modelling time outlier. Highly occluded pipelines are the primary
reason for this outlier, since they have the lowest average coverage
(26.5%), compared to the other projects. The diameter of pipelines in
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this facility was significantly larger, since most pipes are used for
sewage purposes. These observations show that manually detected
pipes have larger average diameter (0.617 m) compared to auto-
matically extracted cylinders (0.315m) for the same dataset. This
means that it is difficult for the software to identify cylinders with large
diameters.

RMSE and coverage percentages for each extracted cylinder are
calculated in the “SmartSheet”, provided in EdgeWise. Table 10 sum-
marizes their average values for all case studies. The results show that
the first room of the typical facility has the lowest RMSE, meaning that
the automatically extracted cylinders fit well the corresponding points
of the cylinders. The average coverage area of cylinders in all case
studies is around a quarter of the cylinder (29.20%), which is the reason
that many cylinders are not automatically extracted.

The performance of the software is evaluated based on the two-
following metrics, precision and recall [44],

True Positives (TP)

precision = — —
True Positives (TP) + False Positives (FP) (11)
True Positives (TP)
recall = — -
True Positives (TP) + False Negatives (FN) (12)

where TP are the number of objects that are automatically detected as
pipes and were correctly inspected as pipes.

FP are the number of objects that are detected as pipes, but we
classified them as other cylindrical objects (for instance handrails, cir-
cular hollow steel sections to name a few).

FN are the number of objects that are pipes but were not auto-
matically detected as pipes. Those pipes were manually extracted and
added to the model.

The performance metrics obtained from our four sample datasets
are given in Table 11. According to precision, out of all the auto-
matically detected cylinders only an average of 47% in all case studies
correspond to pipes, whereas the rest were other cylindrical objects.
The average recall was 58.1%, meaning that only 58.1% of all pipes
existing in a typical facility will be automatically detected. The results
show that the water treatment facility, which is an outdoors facility, has
the lowest recall, being 33.3%. The low performance metrics of this
dataset, compared to the other ones, can be attributed to increased
noise. The low precision of pipes in the first room of the typical facility
(27.9%) is attributed to a larger number of FPs (roof tiles), which were
wrongly detected as pipes.

The same metrics were measured for cylinders. The only difference
in the metrics used is that precision is defined as the number of auto-
matically detected cylinders out of all the detected cylinders, whereas
recall is the number of automatically detected cylinders out of all other
automatically detected non-cylindrical shapes. The recall of cylinders is
high for all datasets except the petrochemical plant (45.7%), which is
attributed to low scan completeness of this dataset and increased
clutter. The average recall for the four datasets is 75.6% indicating the
advantage of the software to extract this primitive shape. The precision
of cylinders is also 15% higher compared to that of pipes, since the
software is designed to detect cylindrical shapes. The lowest precision
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Table 11
Average performance metrics of pipe and cylinder detection.

Dataset Pipe detection metrics Cylinder detection metrics

Recall (%) Precision (%) Recall (%) Precision (%)

Typical facility Room  80.1 27.9 69.3 48.2
1

Typical facility Room  59.5 54.6 100.0 22.0
2

Water facility 33.3 36.4 87.3 86.4

Petrochemical plant 59.6 69.3 45.7 91.9

Average 58.1 47.0 75.6 62.1

(22%) is observed for the second room of the typical industrial facility,
which is attributed to corrugated shapes in the roof that were in-
correctly modelled as cylinders. The same trend (low precision of about
48%) is observed for the first room of the facility for the same reason.

3.6. Modelling of structural components

The most frequent structural elements that were identified above
(CHSs, channels, I-beams) are modelled in the four case studies. The
user selects the I-Beam, Channel, Round Tubing tools to manually extract
the respective elements. The user can also create custom standards for
shapes that do not exist on the standards list. The “Pattern Extract” tools
extract groups or repeatable elements of the same object type. The
extracted sections are then inspected for accuracy in the “SmartSheet”.

The standards that were used for this evaluation were taken from
the AISC manuals. We also used the “Autofit” tool to find the correct size
of the specified section automatically. Precision and recall metrics were
not used herein, since the procedure is manual.

3.7. Overall performance of state-of-the-art modelling software

Representative 3D models obtained from a room of a petrochemical
plant are presented in Fig. 6. The laser scanned data was provided by
AVEVA Group plc. The initial point cloud, the automated pipeline ex-
traction output and the 3D model that was obtained after manual
modelling of the most frequent pipeline elements, structural sections
and electrical conduit are presented in Fig. 6. These 3D models are not
the complete 3D models of the facility, but the subsets used for the
evaluation purposes of this paper.

The purpose of Fig. 6 is not to show the complete 3D model of the
facility, but rather an indicative example of the number of objects and
the modelling time that took to model those. It is noteworthy that solid
bars are not modelled separately in EdgeWise since they cannot be
distinguished from circular hollow sections in a laser survey.

The 3D models can be exported to Revit, in order to obtain IFC
models for interoperability purposes between different software
packages. However, we observed that reducers, valves, flanges, angles
and some channels (C3 and C4 according to the American Institute of
Steel Construction standards - AISC) cannot be exported in Revit.
Models containing straight elements with length < 4 mm cannot also be
transferred to Revit.

The performance of state-of-the-art modelling software is summar-
ized in Table 12. This Table shows that fitting of the most important
object types has been solved by commercial software like EdgeWise,
since known geometric shapes are automatically fitted to the selected
point clusters.

Automated primitive shape detection of cylinders has partially been
solved since the results showed 75% recall and 62% precision in
EdgeWise. Non-cylindrical shapes are manually extracted, and classi-
fication of all object types has not been achieved.

Pipes, conduit and CHSs were also modelled manually in Revit to
compare the man-hours needed for their shape extraction through this
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manual process. 30 objects were modelled in each category and their
average modelling times were measured. The workflow of manual
modelling in a software such as Revit entails three steps: (a) manual
segmentation of the desired object in a point cloud visualization soft-
ware such as CloudCompare, (b) export of the points in Autodesk Recap
to obtain the appropriate format and then (c) modelling in Revit. Revit
2017 was used for this evaluation. The parameters of the cylinders
(radius and length) are chosen based on the modeler's discretion.

3.8. Results

The time needed to model the above-mentioned object types is
measured in the same operating system as stated above for pipeline,
structural and electrical object types. The average modelling time per
object for the most frequent object types is calculated. The manual
modelling time of cylindrical objects is broken down to the two steps
investigated above; shape extraction and semantic classification.
Knowing the average number of objects of a specific type in a typical
facility, we calculate the average modelling time for each object type
and each modelling step where applicable. Fig. 7 shows the modelling
time/object in minutes and Fig. 8 the estimated total man-hours for
modelling of the same object types in a typical industrial facility in
hours.

Fig. 7 shows that manual extraction of straight pipes in EdgeWise is
the most time-intensive task compared to semantic classification for
pipes that requires 1.68 min/straight pipe. Manual extraction of chan-
nels is also a laborious task compared to the manual extraction of all
other object types, requiring 1.78 min/channel due to the complexity of
their shape. Although some of the CHSs are automatically extracted, it
is difficult to identify them manually, since they are usually pipe sup-
ports and handrails, which are significantly occluded. For instance, pipe
supports are occluded due to pipelines that run on top of them. This is
the reason for intensive modelling time (0.93 min/CHS). Semantic
classification of cylinders is not a time-intensive step, requiring < 0.5
min/cylinder on average.

We choose a facility from the frequency-based case studies in-
vestigated above that has the median total number of objects out of the
five facilities investigated. This is the petrochemical plant with 240,687
objects. Fig. 8 shows that pipes require the most modelling time on
average (around 5200 labor hours) for this facility with 53,834 pipes. It
is important to note that, although automated extraction of cylinders
has been achieved by EdgeWise Plant/MEP, modelling of pipelines
takes still substantial amount of time. The cylindrical shape is the most
frequent geometric shape, thus the modelers' effort to distinguish
electrical conduit, CHSs, handrails and other cylindrical objects from
straight pipes is significant.

Although electrical conduit is the most prevalent object type in in-
dustrial plants (24.3% in a typical plant, Table 6), it takes less man-
hours to model it compared to a straight pipe. This is attributed to the
design of electrical conduit that places many cylinders closely to each
other. This makes it easier for the modeler to identify them, thus the
modelling time is reduced.

Flanges and elbows do not require substantial time (0.28 and
0.39 min/object respectively) as shown in Fig. 7, although the user
manually adds them in the pipeline model. We observe that once the
piping network is identified, the addition of fittings is a quick task that
does not necessarily need to be automatically modelled. Angles require
the least amount of time, being < 0.25 min/angle, which is attributed
to their simple geometry compared to I-beams or channels.

The total labor hours for manual modelling of the petrochemical
plant with 240,687 objects of the above categories are estimated to be
21 person-months. This finding is based on the following assumptions:
(a) one trained modeler for all case studies, (b) the working hours are
assumed to be 8 h/day, 5 days/week and (c) the operating system is as
specified above. The same metric for cylinder extraction and classifi-
cation is 17 person-months using EdgeWise as explained above. The
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Fig. 6. (a) Input point cloud, (b) automated cylinder extraction in EdgeWise Plant/MEP and (c) 3D model after manual modelling of pipes, structural elements and

electrical conduit for a room of a petrochemical plant.
(dataset provided by AVEVA Group Plc.)

Table 12
Performance of state-of-the-art software packages on each modelling step for
the most important object types.

Industrial object Primitive shape Semantic labelling Fitting
type extraction (classification)

Straight pipe Partially solved Not solved Solved
CHS* Partially solved Not solved Solved
Channel Not solved Not solved Solved
Conduit Partially solved Not solved Solved
I-beam Not solved Not solved Solved
Valve Not solved Not solved Solved
Elbow Not solved Not solved Solved
Flange Not solved Not solved Solved
Angle Not solved Not solved Solved

2 Circular Hollow Section (CHS).
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confidence intervals for the average manual modelling time of pipes,
conduit and CHSs are calculated since the selection of parameters de-
pends on the modeler's discretion. Pipes were manually modelled in
5.8 = 1min with 99% confidence level. Conduit and CHSs were
modelled in 1.3 + 0.75 and 3.6 * 0.4 min respectively. This means
that the modelling time does not change substantially for any of these
object categories.

We observe that 64% of the man-hours needed for manual model-
ling of cylinders are saved by using the state-of-the-art software,
EdgeWise, compared to conventional manual modelling platforms such
as Revit. The results also show that 67% of manual modelling time is
saved for pipe modelling. This case shows that 4836 labor hours are
saved when modelling cylinders in EdgeWise. This is crucial especially
for these facilities, since the time required to take decisions for main-
tenance and refurbishment is limited due to continuous production
flow.
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4. Conclusions

The ten most important object types in the three most frequent in-
dustrial categories (structural elements, piping network and electrical
equipment) are ranked based on their frequency of appearance and
modelling time. The results showed that cylindrical objects (straight
pipes, electrical conduit and circular hollow sections) require 80% of
the total modelling time of the ten most important object types in
EdgeWise and represent 45.5% of the total number of objects in an
industrial plant on average.

This paper marks the first study specifically aimed at identifying the
most frequent and laborious to model industrial object types. The re-
sults of this paper show that current practice has achieved primitive
shape extraction for straight pipes, elbows and conduit automatically.
However, semantic labelling of each object type is not performed in the
state-of-the-art modelling packages. Researchers have proposed
methods for semantically labelling industrial objects based on prior
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knowledge, however these methods do not distinguish object classes
that have the same primitive shape such as cylindrical objects (e.g.,
handrails, pipes, electrical conduit, circular hollow sections).

EdgeWise was selected compared to other state-of-the-art software,
because it is the only commercially available tool that attempts to au-
tomatically extract cylinders from the point cloud of an industrial plant
without significant user assistance. PointSense Plant has a similar
functionality (“Walk the Run”) as discussed above, however the user
needs to identify the potential regions where the pipes are most likely to
be located. This semi-automated approach guides the user through the
run by suggesting insertion points for pipes and keeping the user in
control of the modelling process. Therefore, EdgeWise was preferred
since it has achieved greater level of automation for cylinder extraction.
It has also substantially facilitated 3D modelling of industrial plants
according to the findings discussed above. However, it has some lim-
itations, which can be summarized as follows:

(a) The modeler should identify the structural elements manually or
define the location of an object roughly in the point cloud to fit it.

(b) Detection of cylinders has only been partially solved, since cylin-
ders are detected with 75% recall and 62% precision. The same
metrics for pipes are 58% and 47% respectively.

(c) EdgeWise does not enrich the 3D geometric primitives with se-
mantic labels and topological relationships. Engineers are required
to manually implement the semantic labels of the components of
the 3D model.

(d) Data inconsistency between different software platforms impedes
modelers from exchanging data between different AI-BIM plat-
forms. EdgeWise is not designed to provide a final output in an open
and generic schema.

The contributions presented in this paper are therefore (1) the dis-
covery of the most frequent object types in industrial facilities and their
respective modelling time and (2) the measurement of the performance
of state-of-the-art software and specifically EdgeWise. The latter un-
covered (a) the substandard performance of this software in detecting
cylinders, (b) the inability of this software to (i) further classify cylin-
ders into conduits or pipes or CHSs and (ii) detect and further classify I-
beams, channels elbows, flanges, valves and angles in spite of their high
frequency in an industrial facility.

Direct implications of modelling the priority list of object types are
assessed based on modelling time. The results of the evaluation of
EdgeWise showed that semi-automatically modelling cylinders will re-
duce man-hours needed for modelling those by 64%. This can have a
direct impact for industrial facility managers, since every hour of as-is
modelling time is crucial for the operation of the plant in un-
precedented circumstances (failures of critical objects, retrofitting op-
erations and plant expansion).

Indirect implications of prioritizing object types are reductions of
the modelling cost, since man-hours of modelers will be reduced.
Although there is no way to calculate the exact cost of overestimated
severity of industrial inspections and maintenance, it is reasonable to
predict that maintenance of industrial plants will be substantially fa-
cilitated once AI-BIMs are easy to develop and the costs do not coun-
teract the benefits of their creation. Poor maintenance of these assets
does not always affect the asset's territory but also impacts nearby re-
gions and puts lives of the public living close by at serious risk.

The presented research has room for improvement and some lim-
itations of this study can direct future research. This study focuses on
the industrial objects that are important to model, however methods on
how to automatically model those were not investigated. Future work
involves implementation of automated classification algorithms (e.g.
machine learning) for the most important object types to minimize the
modelling time. Application of these algorithms for hundreds of classes
of different objects that have strong similarities (e.g., pipes, electrical
conduit, CHs) is a very difficult multi-classification problem, that will
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be substantially benefited from the results of this exploratory research
for the important objects to model in these complex environments.
Overall, a training library of the object classes that are critical for in-
dustrial facility operations, frequent in industrial environments and
laborious to model can be established to assist further research aimed at
automated detection of these classes. Application of the findings of this
paper will guide researchers on investigating methods for automatically
modelling these objects.
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